Ssylka

Развитие Retrieval-Augmented Generation: от простого к сложному

RAG — это технология, которая комбинирует поиск данных и генерацию текста, что позволяет создавать более точные и актуальные ответы, используя внешние источники информации, такие как базы знаний и интернет. Это особенно ценно в ситуациях, где требуется контекстно-зависимая и персонализированная информация, где обычные языковые модели могут давать неполные или неточные ответы. RAG снижает вероятность ошибок и галлюцинаций, автоматизирует процессы обработки запросов и обеспечивает масштабируемость.
Развитие Retrieval-Augmented Generation: от простого к сложному
Изображение носит иллюстративный характер

Простые RAG системы могут не справляться с задачами, требующими многоступенчатых решений или динамических действий, например, когда требуется не просто предоставить информацию, а выполнить действие на ее основе. Для таких ситуаций разработан агентный RAG, который использует ИИ-агентов, оснащенных краткосрочной и долгосрочной памятью, механизмами планирования и инструментами для выполнения различных операций, включая запросы к БД, поиск веб-контента или вызов API. Агентный RAG обрабатывает запросы в несколько этапов: идентификация задачи, ее выполнение и возврат результата для дальнейшего использования.

Для работы со сложными взаимосвязями между данными применяется GraphRAG, который интегрирует графовые базы данных с RAG. Эта технология позволяет учитывать не только прямой запрос, но и связанные контексты, например, моделируя отношения между пользователями, событиями и продуктами. GraphRAG особенно эффективен при работе со сложной структурой данных, помогая динамически принимать решения и объединять данные из различных источников.

Существует множество фреймворков для реализации RAG, таких как LangChain, Semantic Router и Llama Index, каждый из которых имеет свои преимущества и особенности. LangChain предоставляет гибкость в построении цепочек обработки языка. Semantic Router оптимизирует маршрутизацию запросов. Llama Index отлично подходит для работы с большим объемом данных. Также существуют перспективные фреймворки, такие как CrewAI, Swarm, Letta и Atomic agents, которые предоставляют инструменты для работы с многоагентными системами. Они предлагают новые подходы к управлению и взаимодействию между агентами, что открывает дополнительные возможности для решения сложных задач.


Новое на сайте

16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над... 16928Может ли искусство напрямую очищать экосистемы от вредителей? 16927Вирусное наследие в геноме человека оказалось ключевым регулятором генов 16926Рекордные оазисы жизни обнаружены в бездне океанских траншей 16925Крах прогнозов UnitedHealth на фоне растущих издержек и трагедий 16924Формула ясного ума: доказанный способ замедлить когнитивное старение 16923Действительно ли ощущения тепла и прохлады идут в мозг разными путями? 16922Гражданские права как инструмент холодной войны 16921Премиальное белье Duluth Trading Co. со скидкой более 50% 16920Сделает ли запрет на пищевые красители школьные обеды по-настояшему здоровыми? 16919Код от Claude: ИИ-сгенерированный вирус похищал криптовалюту через npm 16918Как спутник NISAR будет предсказывать катастрофы с сантиметровой точностью? 16917Атаки на Microsoft 365: как поддельные приложения обходят многофакторную аутентификацию