Ssylka

Развитие Retrieval-Augmented Generation: от простого к сложному

RAG — это технология, которая комбинирует поиск данных и генерацию текста, что позволяет создавать более точные и актуальные ответы, используя внешние источники информации, такие как базы знаний и интернет. Это особенно ценно в ситуациях, где требуется контекстно-зависимая и персонализированная информация, где обычные языковые модели могут давать неполные или неточные ответы. RAG снижает вероятность ошибок и галлюцинаций, автоматизирует процессы обработки запросов и обеспечивает масштабируемость.
Развитие Retrieval-Augmented Generation: от простого к сложному
Изображение носит иллюстративный характер

Простые RAG системы могут не справляться с задачами, требующими многоступенчатых решений или динамических действий, например, когда требуется не просто предоставить информацию, а выполнить действие на ее основе. Для таких ситуаций разработан агентный RAG, который использует ИИ-агентов, оснащенных краткосрочной и долгосрочной памятью, механизмами планирования и инструментами для выполнения различных операций, включая запросы к БД, поиск веб-контента или вызов API. Агентный RAG обрабатывает запросы в несколько этапов: идентификация задачи, ее выполнение и возврат результата для дальнейшего использования.

Для работы со сложными взаимосвязями между данными применяется GraphRAG, который интегрирует графовые базы данных с RAG. Эта технология позволяет учитывать не только прямой запрос, но и связанные контексты, например, моделируя отношения между пользователями, событиями и продуктами. GraphRAG особенно эффективен при работе со сложной структурой данных, помогая динамически принимать решения и объединять данные из различных источников.

Существует множество фреймворков для реализации RAG, таких как LangChain, Semantic Router и Llama Index, каждый из которых имеет свои преимущества и особенности. LangChain предоставляет гибкость в построении цепочек обработки языка. Semantic Router оптимизирует маршрутизацию запросов. Llama Index отлично подходит для работы с большим объемом данных. Также существуют перспективные фреймворки, такие как CrewAI, Swarm, Letta и Atomic agents, которые предоставляют инструменты для работы с многоагентными системами. Они предлагают новые подходы к управлению и взаимодействию между агентами, что открывает дополнительные возможности для решения сложных задач.


Новое на сайте

18607Золотой распад кометы ATLAS C/2025 K1 18606Секретный бренд древнего Рима на стеклянных шедеврах 18605Смогут ли чипсы без искусственных красителей сохранить свой знаменитый вкус? 18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли