Ssylka

Как искусственный интеллект меняет молекулярный дизайн с помощью оценки неопределённости?

Исследователи из Национального Тайваньского университета продемонстрировали, что включение оценки неопределённости (Uncertainty Quantification, UQ) в графовые нейронные сети (Graph Neural Networks, GNN) значительно повышает эффективность и устойчивость оптимизации молекул. Их работа опубликована в журнале Nature Communications.
Как искусственный интеллект меняет молекулярный дизайн с помощью оценки неопределённости?
Изображение носит иллюстративный характер

Ключевой задачей исследования стало интегрирование моделей, учитывающих неопределённость, в процессы компьютерного молекулярного дизайна (CAMD), чтобы улучшить принятие решений при поиске новых материалов и лекарственных средств. Учёные систематически проверили, способны ли усовершенствованные с помощью UQ нейронные сети направленного обмена сообщениями (Directed Message Passing Neural Networks, D-MPNNs) эффективно управлять оптимизацией в открытых и обширных химических пространствах.

Типичные алгоритмы машинного обучения плохо справляются с предсказаниями для молекул, которые не встречались в обучающих выборках, что особенно критично для реальных задач, где химическое пространство практически безгранично и мало изучено. Для преодоления этой проблемы исследователи объединили D-MPNN с генетическими алгоритмами, что позволяет проводить гибкую оптимизацию молекул без необходимости ограничиваться заранее заданными библиотеками соединений.

В ходе работы были протестированы различные стратегии оптимизации, учитывающие неопределённость, на 16 разнообразных задачах. Эти задачи взяты с платформ Tartarus и GuacaMol, отражающих актуальные вызовы в области органической электроники, реакционной инженерии и разработки лекарств. Особое внимание уделялось многоцелевым сценариям, где необходимо одновременно балансировать между конкурирующими молекулярными свойствами.

Среди всех протестированных подходов наилучшие результаты показал метод Probabilistic Improvement Optimization (PIO). Этот метод использует количественную оценку неопределённости для оценки вероятности того, что кандидаты отвечают заданным критериям дизайна. PIO позволяет избегать ненадёжных экстраполяций и направлять поиск в области, наиболее перспективные с химической точки зрения.

Профессор И-Пей Ли, ведущий автор работы, отмечает: «Химический дизайн часто требует поиска баланса между множеством конкурирующих целей в огромных и неопределённых пространствах поиска. Интеграция оценки неопределённости в оптимизацию, управляемую машинным обучением, даёт нам фундаментальный способ ориентироваться в этой сложности и повышает надёжность предлагаемых искусственным интеллектом решений».

Результаты исследования формируют прочную основу для внедрения методов молекулярного поиска, способных учитывать неопределённость. Это открывает путь к более надёжным и эффективным системам искусственного интеллекта для задач химии и материаловедения.

В работе использовались современные методы: оценка неопределённости, графовые нейронные сети, D-MPNN, генетические алгоритмы и стратегия PIO. Эксперименты охватили 16 задач с платформ Tartarus и GuacaMol, с акцентом на реальные приложения в электронике, инженерии и фармацевтике.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...