Ssylka

Смогут ли углеродные точки произвести революцию в обнаружении энтеровирусной рнк в реальном времени?

Исследователи из Нанонаучного центра (NSC) Университета Йювяскюля в Финляндии разработали инновационный безметочный ратиометрический флуоросенсор. Эта технология позволяет с высокой селективностью и чувствительностью обнаруживать РНК энтеровирусов, открывая новые горизонты в мониторинге вирусных процессов. Разработка подчеркивает важность междисциплинарного сотрудничества между биологами, химиками и физиками для решения глобальных проблем здравоохранения, связанных с вирусами.
Смогут ли углеродные точки произвести революцию в обнаружении энтеровирусной рнк в реальном времени?
Изображение носит иллюстративный характер

Необходимость в таких передовых инструментах обусловлена ограничениями существующих методов вирусной диагностики. Пандемии наглядно продемонстрировали угрозу, которую несут вирусы, и критическую важность их раннего обнаружения для предотвращения вспышек. Традиционные подходы часто не способны предоставить пространственно-временную информацию, особенно касательно процесса высвобождения вирусного генома из капсида.

В основе нового сенсора лежат углеродные точки (CDs), функционализированные ковалентно связанными с ними компонентами: зондом (одноцепочечным комплементарным фрагментом олигонуклеотида) и красителем бромистым этидием (EB). Эта конструкция, названная «Функционализированный Сенсор» (Func Sensor), показала значительное превосходство над «Нефункционализированным Сенсором» (Non-Func Sensor), представляющим собой простую смесь тех же компонентов (CDs, зонд и EB).

Механизм детекции основан на ратиометрическом измерении флуоресценции. Когда целевая РНК (или ДНК) гибридизируется с зондом на сенсоре, это приводит к усилению флуоресценции бромистого этидия. Одновременно флуоресценция углеродных точек незначительно изменяется из-за переноса электронов. Соотношение этих изменений флуоресценции позволяет точно определить наличие целевой РНК. Превосходство Func Sensor объясняется усиленным переносом заряда между CDs и EB благодаря ковалентной иммобилизации зонда на поверхности углеродных точек.

Углеродные точки являются идеальной платформой для таких биосенсоров. Эти флуоресцентные наночастицы обладают рядом преимуществ: простота синтеза, исключительная фотостабильность, настраиваемая фотолюминесценция, отличная растворимость в воде, биосовместимость и универсальные поверхностные группы для конъюгации с лигандами. Эти свойства делают CDs ключевым элементом в современных биосенсорных технологиях.

Тестирование показало, что обе версии сенсора обладают ультрачувствительностью при работе с целевой ДНК. Однако Non-Func Sensor продемонстрировал более низкую чувствительность и оказался неэффективным при работе с реальными образцами энтеровирусной РНК. В то же время Func Sensor показал высокую чувствительность как к ДНК, так и к вирусной РНК, а также значительно улучшенную селективность.

Результаты подтверждают пригодность Func Sensor для практического применения: он обеспечивает быстрое, точное обнаружение вирусной РНК in situ в режиме реального времени. В частности, исследователи успешно продемонстрировали способность сенсора отслеживать высвобождение РНК энтеровируса из вирусного капсида in vitro.

Текущая работа представляет собой доказательство принципа и дает ценную информацию о механизмах переноса заряда в системе. Команда исследователей, включая профессора физики Юсси Топпари (Jussi Toppari), докторанта Амара Раджа (Amar Raj), постдокторанта Абхишека Патхака (Abhishek Pathak, ранее работавшего в Университете Йювяскюля) и профессора клеточной и молекулярной биологии Варпу Марьомяки (Varpu Marjomäki), продолжает работу над повышением надежности системы.

Основным направлением будущих исследований является замена потенциально опасного красителя бромистого этидия на более безопасные, менее цитотоксичные и биосовместимые аналоги. Эта модификация критически важна для повышения безопасности и эффективности сенсора с целью его возможного применения для детекции вирусной РНК in vivo. Результаты исследования опубликованы в научном журнале Carbon.


Новое на сайте

18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на... 18651Как обновление политик безопасности Microsoft Entra ID в 2026 году искоренит атаки 18650Архитектурная уязвимость Microsoft Teams позволяет хакерам отключать защиту Defender 18649Вторая волна червеобразной атаки Shai-Hulud прорвала защиту экосистем npm и Maven