Ssylka

Как новая система SPSIM видит мир в 3D с одного кадра?

Получение точных трехмерных деталей объектов с помощью одной камеры представляет собой серьезную техническую проблему. Традиционные подходы часто требуют сложных установок с двумя камерами или специфических условий освещения, что делает их непрактичными для многих реальных сценариев использования.
Как новая система SPSIM видит мир в 3D с одного кадра?
Изображение носит иллюстративный характер

Исследователи из Нанкинского университета разработали прорывную систему стереоскопической поляризационной визуализации моментального снимка (SPSIM), предлагающую новый подход к 3D-изображениям. Эта разработка, представленная в журнале Optica и освещенная на платформе Science X Dialog, объединяет метаповерхностную оптику и искусственный интеллект (ИИ) для извлечения высокодетализированной информации о 3D-форме объектов в реальном времени.

Система SPSIM способна захватывать полные данные о поляризации по Стоксу за один кадр. Это достигается с помощью специально разработанной метаповерхностной линзы, показанной на схеме системы (Рис. 1). Такой подход устраняет необходимость в использовании нескольких поляризаторов или последовательных экспозиций, характерных для обычных методов поляризационной съемки.

Ключевым элементом системы является крупномасштабная поляризационная метаповерхность размером 1.65 × 1.65 мм². Эта метаповерхность (показана на Рис. 2) продемонстрировала коэффициент экстинкции 25 дБ, сравнимый с коммерческими поляризаторами, и беспрецедентную эффективность на центральной длине волны в 65%. Эксперименты подтвердили, что метаповерхность успешно разделяет шесть различных состояний поляризации падающего света, направляя каждый поляризационный компонент в заданную позицию на детекторе. Результаты моделирования полностью совпали с экспериментальными данными, подтверждая высокую производительность в узкополосных условиях.

Обработка захваченных данных осуществляется с помощью нейросетевого конвейера. Важнейшим аспектом является использование данных о круговой поляризации (CP), что значительно повышает точность определения нормалей к поверхности. Система достигает точности определения глубины в пределах 0.15 мм.

Процесс обработки включает предварительный этап для получения однозначных значений зенитного угла (ϑ) и азимутального угла (𝜓) (иллюстрация на Рис. 3). Первичная оценка глубины выполняется с использованием измеренных полных параметров Стокса (FSP), угла поляризации (AOP) и степени поляризации (DOP).

Одной из проблем при реконструкции является неоднозначность азимутального угла (𝜓). Для ее решения используется подход «форма из затенения» (shape-from-shading, SFS) в качестве физического априорного знания. Кроме того, применяется улучшенная модель нейронной сети U-Net, обученная на данных FSP и априорной информации, для высокоточного восстановления нормалей к поверхности.

Эффективность SPSIM была подтверждена в ходе реальных испытаний. Качественный и количественный анализ карт нормалей к поверхности (примеры на Рис. 4a) для тестовых объектов, таких как бутылки и чашки из полимерных материалов, показал высокую чувствительность системы к мелким деталям, которые трудноразличимы для традиционных камер или человеческого глаза при естественном освещении.

Сравнение показало, что нейросетевой подход, используемый в SPSIM, значительно снижает ошибки реконструкции на гладких поверхностях по сравнению с традиционными методами. Эксперименты однозначно подтвердили критическую роль данных о круговой поляризации (CP) для восстановления формы. CP позволяет точно фиксировать тонкие изменения контуров, тогда как ее исключение приводит к значительным ошибкам и потере деталей (сравнение на Рис. 4b и 4c).

Система также продемонстрировала возможность реконструкции полной 3D-текстуры объекта. Это достигается путем съемки объекта с нескольких ракурсов и последующего объединения полученных облаков точек (результат показан на Рис. 5).

Разработка SPSIM представляет собой значительный шаг вперед в области 3D-визуализации высокого разрешения. Компактный и эффективный дизайн системы позволяет осуществлять 3D-реконструкцию поверхности в реальном времени, даже в экстремальных условиях, и делает технологию пригодной для интеграции в портативные устройства.

Потенциальные области применения SPSIM включают дополненную реальность (AR), роботизированное зрение, технологии визуализации следующего поколения, биомедицинскую визуализацию, промышленный контроль и автономные системы.


Новое на сайте

18250Сможет ли искусственный интеллект обеспечить TSMC мировое господство? 18249Критическая уязвимость Adobe с оценкой 10.0 попала под активную атаку 18248Цифровое воскрешение прогнозов погоды из 90-х 18247Зачем мозг в фазе быстрого сна стирает детали воспоминаний? 18246Мог ли древний яд стать решающим фактором в эволюции человека? 18245Тайна колодца Мурсы: раны и днк раскрыли судьбу павших солдат 18244Битва за миллиардный сэндвич без корочки 18243Почему ваши расширения для VS Code могут оказаться шпионским по? 18242Как подать заявку FAFSA на 2026-27 учебный год и получить финансовую помощь? 18241Мог ли взлом F5 раскрыть уязвимости нулевого дня в продукте BIG-IP? 18240CVS завершает поглощение активов обанкротившейся сети Rite Aid 18239Nvidia, BlackRock и Microsoft покупают основу для глобального ИИ за $40 миллиардов 18238Действительно ли только род Homo создавал орудия труда? 18237Инженерный триумф: сотрудник Rivian вырастил тыкву-победителя 18236Процент с прибыли: как инвесторы создали новый источник финансирования для...