Ssylka

Наноструктурированный медный сплав бросает вызов суперсплавам

Исследователи из Исследовательской лаборатории Армии США (ARL) и Университета Лихай (Lehigh University) при сотрудничестве с Университетом штата Аризона (Arizona State University) и Университетом штата Луизиана (Louisiana State University) разработали новый наноструктурированный сплав на основе меди, тантала и лития (Cu-Ta-Li), обладающий исключительной высокотемпературной прочностью и термической стабильностью. Этот материал по некоторым свойствам конкурирует с суперсплавами, сохраняя при этом высокую электро- и теплопроводность, характерную для меди.
Наноструктурированный медный сплав бросает вызов суперсплавам
Изображение носит иллюстративный характер

Сплав Cu-Ta-Li демонстрирует уникальное сочетание характеристик: он сохраняет форму и сопротивляется деформации даже при температурах, близких к точке плавления, выдерживает экстремальные длительные термические воздействия и механические нагрузки. Его структура на наноуровне обеспечивает высокую устойчивость, делая его одним из самых прочных материалов на основе меди, способных противостоять деградации при сильном нагреве.

Научный прорыв заключается в механизме стабилизации наноструктуры. В сплаве формируются преципитаты Cu3Li, которые стабилизируются уникальной атомной бислойной структурой (complexion) на границах зерен, обогащенной танталом. Концепция таких стабилизирующих структур была впервые предложена исследователями из Университета Лихай. Эта структура действует как барьер, предотвращая рост зерен при высоких температурах.

Именно танталовый бислой на границах зерен позволяет сохранять нанокристаллическую структуру сплава и кардинально улучшает его характеристики при высоких температурах. Это было подтверждено с помощью вычислительного моделирования методом теории функционала плотности (DFT), которое показало стабилизирующую роль танталовой прослойки.

По сравнению с существующими высокотемпературными материалами, сплав Cu-Ta-Li занимает особую нишу. Никелевые суперсплавы, используемые, например, в реактивных двигателях, чрезвычайно прочны, но уступают в теплопроводности. Сплавы на основе вольфрама термостойки, но очень плотны и сложны в обработке. Новый сплав Cu-Ta-Li предлагает баланс: прочность и стабильность, сопоставимые с суперсплавами, в сочетании с высокой проводимостью меди.

Разработка сплава велась с использованием методов порошковой металлургии и высокоэнергетического криогенного измельчения для обеспечения мелкомасштабной наноструктуры. Среди соавторов исследования – Мартин Хармер (Martin Harmer), почетный профессор материаловедения и инженерии Фонда Alcoa в Университете Лихай, и Патрик Кантуэлл (Patrick Cantwell), научный сотрудник Университета Лихай.

Для подтверждения уникальных свойств сплав подвергли строгим испытаниям. Длительный тест на стабильность включал отжиг при 800°C в течение 10 000 часов (более года). С помощью передовых методов микроскопии была детально изучена структура преципитатов Cu3Li. Эксперименты на сопротивление ползучести подтвердили долговечность материала в экстремальных условиях.

Потенциал применения сплава Cu-Ta-Li огромен. Он может использоваться в аэрокосмической и оборонной промышленности, гиперзвуковых технологиях и транспортных средствах, высокопроизводительных турбинных двигателях, теплообменниках (включая военные), передовых силовых установках (в том числе военных) и системах терморегулирования для ракет и новейших технологических систем.

Создание этого сплава представляет собой передовое научное достижение, способное изменить подход к разработке материалов для работы в экстремальных условиях. Он закладывает основу для нового класса высокопроизводительных материалов, необходимых для технологий следующего поколения, и подчеркивает стратегическую важность федеральных инвестиций в фундаментальную науку для укрепления национальной безопасности и стимулирования промышленных инноваций в США.

Результаты исследования опубликованы в престижном научном журнале Science. На разработанный сплав Исследовательской лабораторией Армии США (ARL) получен патент США US 11,975,385 B2.


Новое на сайте

18763Зачем черепахам панцирь: для защиты или рытья нор, и все ли умеют в нем прятаться? 18762Почему критическая уязвимость шестилетней давности в роутерах Sierra Wireless угрожает... 18761Как подросток пережил атаку льва 6200 лет назад и почему его похоронили как опасного... 18760Почему случайные травмы превращаются в вечные рисунки на теле? 18759Почему Apple экстренно закрывает уязвимости, используемые для атак на конкретных людей? 18758Какие открытия от Марса до темной материи меняют научную картину мира? 18757Как ультрагорячая супер-Земля TOI-561 b сумела сохранить плотную атмосферу в... 18756Третий межзвездный странник 3I/ATLAS меняет цвет и проявляет аномальную активность 18754Раскопки виселицы XVI века и массовых захоронений казненных мятежников в Гренобле 18753Почему скрытая инфекция убила гигантского крокодила Кассиуса после 40 лет жизни в неволе? 18752Первая церемония Global Space Awards в Лондоне определила лидеров космической индустрии 18751Как новые фишинговые инструменты BlackForce, GhostFrame и гибридные атаки 2025 года... 18750Колоссальная «зеленая стена» Китая: полувековая битва с наступлением пустынь 18749Как превратить браузер в надежный центр управления безопасностью GenAI и предотвратить...