Ssylka

Революционная технология однонаправленной фокусировки света с использованием дифракционной оптики

Исследовательская группа из Калифорнийского университета в Лос-Анджелесе (UCLA) разработала инновационную оптическую технологию, позволяющую осуществлять однонаправленную фокусировку света. Результаты исследования были опубликованы в журнале "Advanced Optical Materials" под руководством профессора Айдогана Озджана, занимающего должность Волженау по инновациям в инженерии в UCLA.
Революционная технология однонаправленной фокусировки света с использованием дифракционной оптики
Изображение носит иллюстративный характер

Новая технология использует структурированные дифракционные слои, оптимизированные с помощью глубокого обучения, и обеспечивает эффективную передачу света в прямом направлении при одновременном подавлении обратной фокусировки. Это компактное и широкополосное решение для однонаправленной доставки излучения представляет собой значительный прорыв в области оптических технологий.

Технический подход исследователей основан на использовании пассивных изотропных дифракционных слоев, не требующих специализированных или нелинейных материалов. Структура оптимизирована с применением методов глубокого обучения и обладает нечувствительностью к поляризации. Важной особенностью разработки является ее масштабируемость для различных длин волн и эффективная работа в широком спектральном диапазоне.

Экспериментальная проверка технологии была проведена с использованием терагерцового (ТГц) излучения. Исследователи изготовили двухслойную дифракционную структуру с помощью 3D-печати и успешно продемонстрировали фокусировку ТГц-излучения в прямом направлении при блокировке энергии, распространяющейся в обратном направлении.

По сравнению с традиционными методами, новая технология имеет ряд существенных преимуществ. Она не требует сложных или нелинейных материалов, активной модуляции, мощных лазерных источников, громоздкого оборудования или сложных и дорогостоящих методов изготовления. Технология преодолевает ограничения асимметричных решеток и метаматериалов, которые обычно чувствительны к поляризации и длине волны. Кроме того, система демонстрирует высокую эффективность даже при наклонном освещении.

Потенциальные области применения этой технологии весьма разнообразны. Она может использоваться в системах безопасности и обороны, оптической связи (для улучшения оптических линий связи в свободном пространстве), передовых платформах визуализации и зондирования, лазерных станках, биомедицинских инструментах, установках для прецизионной метрологии и системах доставки света.

Внедрение данной технологии способно значительно повысить эффективность и безопасность оптических систем. Она уменьшает фоновые помехи, подавляет нежелательные обратные отражения, снижает шум и повышает точность работы оптических устройств. Кроме того, технология предотвращает повреждение чувствительных компонентов, что особенно важно для высокоточных оптических систем.


Новое на сайте

16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira