Ssylka

Как энергия ATP превращается в движение Mycoplasma mobile?

Исследователи впервые расшифровали молекулярный механизм скользящей подвижности Mycoplasma mobile, что стало беспрецедентным достижением в изучении микробных двигательных систем.
Как энергия ATP превращается в движение Mycoplasma mobile?
Изображение носит иллюстративный характер

Бактерии рода микоплазм, среди которых находятся возбудители пневмонии человека, обычно не обладают подвижностью. Исключением является Mycoplasma mobile, обнаруженная в жабрах рыб и способная перемещаться по поверхностям посредством скольжения.

Коллектив ученых из Osaka Metropolitan University под руководством профессора Макото Мияты занимается исследованием данного механизма с 1997 года. Полученные результаты были опубликованы в журнале Science Advances, что подчеркивает важность многолетних усилий в области микробиологии.

Для анализа структуры использовалось криоэлектронное микроскопическое оборудование Осакского университета, достигающее почти атомного разрешения. Такой подход позволил детально рассмотреть состав и конструкцию двигательного комплекса.

Ключевым открытием стало выявление ферментов ATPаз, обеспечивающих работу аппарата через вращательный каталитический механизм. Отдельные единицы комплекса напоминают классические ATP-синтазы, однако их объединение образует абсолютно новую структуру.

Обнаруженный двойной мотор демонстрирует принцип преобразования энергии гидролиза ATP непосредственно в механическое движение, что до сих пор оставалось загадкой для науки. Такой подход позволяет понять, как микроорганизмы используют молекулярные реакции для собственной подвижности.

Работа проливает свет на эволюционное происхождение данных моторов, связывая их с механизмами ATP-синтазы, и открывает новые горизонты в исследованиях энергетического преобразования на молекулярном уровне. Это открытие имеет значение не только для фундаментальной биологии, но и для прикладных наук.

Профессор Макото Мията отметил: «Наше исследование существенно углубляет понимание механизмов преобразования энергии и открывает перспективы для создания наноботов, а также разработки лекарственных средств против микоплазменных инфекций». Его слова отражают потенциал применения результатов данного исследования в будущих технологических и медицинских разработках.

Полученные данные закладывают основу для дальнейших исследований в биофизике и биоинженерии, способствуя разработке новых концепций в создании наномашин и терапевтических средств. Опубликованное в Science Advances исследование подтверждает значимость междисциплинарного сотрудничества и продолжительности научных усилий, начатых в 1997 году.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...