Ssylka

Могут ли хиральные органометаллические нанолисты изменить электронику?

Новое открытие, опубликованное в журнале Nano Letters, представляет разработку гомохиральных органометаллических нанолистов, сочетающих магнитный и ферроэлектрический порядок с топологическими характеристиками при комнатной температуре.
Могут ли хиральные органометаллические нанолисты изменить электронику?
Изображение носит иллюстративный характер

Нанолисты относятся к семейству TM(HPP)₂, где TM – это переходные металлы: хром (Cr), молибден (Mo) и вольфрам (W), а органический лигант HPP (4-(3-гидроксипиридин-4-ил) пиридин-3-ол) обеспечивает необходимую хиральность. Такая комбинация элементов позволяет создать материалы с уникальным набором физических свойств.

Отсутствие пространственной инверсии симметрии приводит к появлению ферроэлектрического состояния, что в сочетании со стабильным магнитным порядком формирует мультифункциональную систему. Сильное прямое d-p спиновое взаимодействие между переходными металлами и двойными анионами HPP является ключевым механизмом устойчивой комнатной температуры магнитизма.

Ферроэлектрические свойства обусловлены нарушением симметрии, благодаря чему в материале возникает внутреннее электрическое поле. Это явление, вкупе с магнитным порядком, обеспечивает надежную работу устройства при стандартных условиях окружающей среды.

Особое внимание уделено топологическим характеристикам: материалы демонстрируют наличие квадратного узлового пункта вблизи уровня Ферми, что свидетельствует о топологически нетривиальной фазе. Хиральные структурные вариации способствуют переходу к фазе с уникальными фононными свойствами.

Способность управлять поглощением света и топологией фононов посредством внешнего электрического поля открывает новые возможности для адаптивных электронных приборов. Такая управляемость способствует быстрому переключению функциональных режимов в ответ на воздействие электрических сигналов.

Комбинация магнитных, ферроэлектрических и топологических эффектов, действующих при комнатной температуре, существенно повышает потенциал использования данных материалов в следующем поколении информационных устройств. Инновационный подход позволяет преодолеть ограничения низкой рабочей температуры традиционных мультифункциональных систем.

Работы доцента Ли Сянъяна, профессора Ван Сянлуна из Института физики твёрдого тела при Хэфейском институте физической науки Китайской академии наук и профессора Ли Синсин из Университета науки и технологий Китая открывают новые перспективы в изучении хиральных материалов, представляющих высокий интерес для исследований в области магнетизма, ферроэлектричества и топологии.


Новое на сайте

18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда 18669SecAlerts обеспечивает мгновенный мониторинг уязвимостей без сетевого сканирования 18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года?