Ssylka

Может ли электронный лёд в графене изменить квантовую электронику?

Физики из Массачусетского технологического института представили результаты экспериментов, опубликованных в журнале Nature, по созданию нового квантового состояния в ультратонком графене.
Может ли электронный лёд в графене изменить квантовую электронику?
Изображение носит иллюстративный характер

Изучался графен – лист углерода толщиной в один атом с ячеистой структурой, обладающий исключительной прочностью и высокой электропроводностью. Модифицированный ромбоэдрический пентаслойный графен, состоящий из пяти особым образом уложенных слоев, получил обозначение «золотая жила графена» благодаря множеству уникальных свойств.

Квантовая конструкция реализована в виде «квантового сэндвича»: ромбоэдрический пентаслойный графен размещён между слоями гексагонального нитрида бора. Применение различных напряжений позволяло управлять электронной конфигурацией и исследовать поведение электронов в многослойной структуре.

При определённых условиях электроны демонстрировали явление фракционирования, расщепляясь на части, что является проявлением дробного квантового эффекта Холла. Ранее этот эффект наблюдали только в сложных системах при сильных магнитных полях, а здесь он проявился без внешнего магнитного воздействия.

При температурах около 30 милликельвинов электроны замерзали, формируя электронный лёд, который сосуществовал с жидкой фазой электронов, ответственных за дробный квантовый эффект Холла. Аналогия с картой, где «реки» представляют текучие электроны, а «ледники» – замёрзшие, подчёркивает возможность изменения «ландшафта» квантовых состояний посредством управления напряжением.

Луна Цзюй и коллеги отметили: «Мы нашли золотую жилу, и каждая лопата открывает что-то новое». Это высказывание иллюстрирует глубокий интерес к изучению многогранного поведения электронов и перспективы дальнейших исследований в области графена.

Явление обнаружено как в ромбоэдрическом пентаслойном, так и в четырехслойном ромбоэдрическом графене, что указывает на его универсальность и характерность для целого класса материалов.

Контроль квантовых состояний в ультратонких материалах открывает новые возможности для создания квантовых компьютеров, сверхпроводников и других передовых электронных устройств, демонстрируя практическую значимость полученных результатов.


Новое на сайте

18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude