Ssylka

Действительно ли биомасса способна стать надежным источником водорода?

Термохимические методы переработки биомассы, в частности паровая газификация, привлекают все больше внимания как перспективный способ получения водорода (H₂). Этот процесс позволяет генерировать синтез-газ, богатый H₂, однако его эффективность значительно снижается из-за образования смол. Смолы вызывают коррозию оборудования и засорение трубопроводов, что является серьезным препятствием для широкого применения технологии.
Действительно ли биомасса способна стать надежным источником водорода?
Изображение носит иллюстративный характер

Решением проблемы может стать использование катализаторов. Доказано, что они эффективно расщепляют смолы и увеличивают выход H₂. Кроме того, на процесс положительно влияют щелочные и щелочноземельные металлы (AAEM), такие как Ca, Mg, K и Na, содержащиеся в самой биомассе. Однако механизм их воздействия и взаимодействия различных металлов требует дальнейшего изучения.

Группа ученых под руководством профессора Инь Цзяо из Синьцзянского технического института физики и химии Китайской академии наук разработала серию новых катализаторов Ni/CaO–Ca₁₂Al₁₄O₃₃. Целью разработки было повышение стабильности катализаторов при газификации биомассы.

Исследование, опубликованное в журнале "Energy", подробно описывает свойства и эффективность одного из катализаторов этой серии — Ni/Ca₃AlO. В ходе экспериментов было установлено, что начальный выход H₂ при использовании данного катализатора составляет 30,08 ммоль/г биомассы, а концентрация H₂ в синтез-газе достигает 60,61 об.%.

Важнейшим показателем является стабильность катализатора. После десяти циклов работы на поверхности Ni/Ca₃AlO наблюдалось лишь минимальное осаждение углерода и незначительное спекание.

Такая высокая устойчивость к спеканию объясняется уникальной, лезвиеподобной морфологией катализатора. Она усиливает взаимодействие между металлом и носителем, предотвращая созревание Оствальда (рост крупных частиц за счет растворения мелких).

Кроме того, Ca₁₂Al₁₄O₃₃ в составе носителя подавляет образование нитевидного углерода, а легирование кальцием препятствует образованию инкапсулированных предшественников углерода. Совместное действие этих факторов обеспечивает устойчивость катализатора к накоплению углерода.

Данное исследование закладывает теоретическую основу для разработки новых никелевых катализаторов и предоставляет практические рекомендации по производству водорода путем каталитической газификации биомассы.


Новое на сайте

16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira 16933Может ли государственный фонд единолично решать судьбу американской науки? 16932Способна ли филантропия блогеров решить мировой водный кризис? 16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над...