Ssylka

Современные тенденции и метрики качества машинного перевода

Машинный перевод прошел долгий путь развития от rule-based систем, основанных на лингвистических правилах, до статистических и нейронных подходов. Rule-based системы, несмотря на свою основательность, оказались сложными в масштабировании и адаптации к новым языкам, а также подвержены искажению смысла.
Современные тенденции и метрики качества машинного перевода
Изображение носит иллюстративный характер

Статистический машинный перевод (SMT) с использованием двуязычных корпусов стал следующим этапом, предложив более универсальный подход, но требующий огромных объемов данных. Современные системы машинного перевода, такие как Яндекс. Переводчик и Google Translate, перешли к нейронным моделям, делегируя задачи определения корректных форм и употреблений слов нейронным сетям, обученным на больших объемах текстов.

В последнее время наблюдается тенденция к использованию больших языковых моделей (LLM) для машинного перевода. LLM показывают неплохие результаты в общем машинном переводе и позволяют вносить корректировки в стилистику и другие особенности перевода. Однако LLM подвержены артефактам и галлюцинациям, а также требуют больших вычислительных ресурсов.

Оценка качества машинного перевода – сложная задача, поскольку содержит субъективную составляющую. Существуют референсные метрики, требующие наличия эталонного перевода для сравнения, и безреференсные метрики. Классические метрики, такие как BLEU и TER, подвергаются критике из-за своих конструктивных недостатков и слабой корреляции с экспертной оценкой. Нейронные метрики, такие как Comet, показывают более точные результаты, но также имеют свои ограничения, связанные с неинтерпретируемостью и доменоспецифичностью.


Новое на сайте

19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого...