Ssylka

Как ускорить Python с помощью C-расширений: стоит ли игра свеч?

Python, известный своей простотой и удобством, иногда проигрывает в производительности. Для задач, требующих скорости, можно интегрировать C-расширения, используя Python/C API и библиотеку python.h. Это позволяет создавать критически важный к скорости код на C, обходя ограничения GIL (Global Interpreter Lock) и выполняя низкоуровневые операции. C-расширения подходят для интенсивных вычислений, прямого доступа к памяти, работы с C-библиотеками, алгоритмов сжатия и реализации часто используемых узких мест.
Как ускорить Python с помощью C-расширений: стоит ли игра свеч?
Изображение носит иллюстративный характер

Для создания C-расширений требуется настроить окружение. Вместо стандартного venv, удобно использовать Poetry для управления зависимостями и сборки пакетов. Необходимо установить python-dev или python3-dev для доступа к C API. Сборка расширений производится через скрипт , в котором указываются пути к исходным файлам C и необходимые заголовочные файлы. Соблюдение стандартов C11 (или C89/C99) и четкое оформление кода важны для избежания ошибок и совместимости.

Python/C API предоставляет макросы для облегчения работы с Python, такие как PyMODINIT_FUNC для инициализации модулей, Py_ABS, Py_MAX, Py_MIN для математических операций, а также Py_STRINGIFY и PyDoc_STRVAR для работы со строками и документацией. Обработка ошибок в C должна быть явной, с использованием API для генерации исключений Python, включая пользовательские исключения. PyObject – это базовый тип для всех объектов Python. Методы и функции реализуются через PyCFunction, принимающие указатель на объект и кортеж аргументов, а также возвращающие PyObject.

В статье рассматриваются примеры функций на C для вычисления дискриминанта и факториала, а также их Python-оберток, показывая, как PyArg_ParseTuple() разбирает аргументы Python, а Py_BuildValue() создает объекты Python из C-типов. Бенчмаркинг показал, что C-расширения могут увеличить скорость выполнения кода в 5-7 раз по сравнению с чистым Python. Хотя C-расширения повышают производительность, удобство их написания вызывает вопросы. Альтернативой могут служить Go, Nuitka, PyPy и Cython, которые обеспечивают сопоставимую производительность без погружения в низкоуровневое программирование.


Новое на сайте

18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на... 18651Как обновление политик безопасности Microsoft Entra ID в 2026 году искоренит атаки 18650Архитектурная уязвимость Microsoft Teams позволяет хакерам отключать защиту Defender 18649Вторая волна червеобразной атаки Shai-Hulud прорвала защиту экосистем npm и Maven