Ssylka

Революция Карно: ученые преодолевают компромисс между мощностью и эффективностью тепловых двигателей

С момента промышленной революции тепловые двигатели играли ключевую роль в технологическом прогрессе, преобразовывая тепловую энергию в механическую работу. Однако, их работа всегда сопровождалась фундаментальным компромиссом: стремление к высокой мощности приводило к снижению эффективности, и наоборот. Традиционная термодинамика, казалось, жестко связывала эти два параметра, предписывая лишь половину от максимально возможной (карно) эффективности при достижении максимальной мощности.
Революция Карно: ученые преодолевают компромисс между мощностью и эффективностью тепловых двигателей
Изображение носит иллюстративный характер

Классический тепловой двигатель Карно, функционирующий между двумя температурными резервуарами (горячим и холодным), в идеальном случае обратим и обладает максимальной теоретической эффективностью. Реальные двигатели, из-за необратимых процессов, всегда теряют часть энергии в виде тепла, что снижает их эффективность. Более того, высокая эффективность достигается лишь при очень медленной работе, которая, в свою очередь, сводит к минимуму выходную мощность. Этот компромисс, казалось, являлся непреодолимым ограничением.

Однако, недавнее исследование, опубликованное в журнале Physical Review Letters, бросает вызов этому устоявшемуся представлению. Команда ученых, включая профессора Ю-Хана Ма из Пекинского педагогического университета и доктора Б. Шилинга Ляна из Центра системной биологии Дрездена, разработала теоретическую модель биохимического теплового двигателя, способного достигать максимальной мощности, приближаясь при этом к предельной эффективности Карно. Сотрудничество началось после обсуждения в конце 2022 года, и основной упор был сделан на анализ минимальной модели теплового двигателя, основанного на сворачивании полимеров.

Ключевым фактором, позволившим обойти ограничения классической термодинамики, стало использование системы с вырожденными энергетическими уровнями. Вырождение в контексте энергии означает наличие разных микроскопических состояний (конфигураций) с одинаковой энергией. Предложенная модель оперирует двумя уровнями энергии: низким и высоким. При этом, высокий уровень энергии обладает более высокой степенью вырождения.

В системе действуют два основных реакционных пути: реакция, движимая гидролизом АТФ при низкой температуре, и спонтанный переход при высокой температуре. Более высокая температура способствует переходу в высокоэнергетическое состояние с большим количеством конфигураций, в то время как низкая температура благоприятствует реакции, движимой АТФ. Размер системы влияет на резкость перехода, делая его более похожим на переключение. Эти переходы первого рода происходят с минимальными потерями энергии.

С увеличением размера системы биохимический двигатель способен достигать эффективности Карно при максимальной мощности. При этом мощность линейно масштабируется с размером системы, а эффективность приближается к пределу Карно. Увеличение вырождения энергетических уровней значительно повышает производительность теплового двигателя, что нарушает принцип "1/2-универсальности».

«1/2-универсальность» гласит, что тепловые двигатели в режиме линейного отклика (небольшие перепады температур) способны достичь только половины эффективности Карно при максимальной мощности. Исследование показывает, что в системах с высокой степенью вырождения нарушается эта универсальная закономерность. Последовательность, в которой берутся пределы (эффективность Карно, вырождение), имеет значение, а некоторые традиционные термодинамические ограничения требуют пересмотра.

В основе модели лежит биохимический двигатель, способный синтезировать АТФ. Это открывает перспективы для разработки практических двигателей, использующих биополимеры, которые естественным образом обладают вырожденными развернутыми состояниями. Полученные результаты, таким образом, представляют собой значительный шаг вперед в области термодинамики и могут привести к созданию новых, гораздо более эффективных энергетических технологий.


Новое на сайте

18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на... 18651Как обновление политик безопасности Microsoft Entra ID в 2026 году искоренит атаки 18650Архитектурная уязвимость Microsoft Teams позволяет хакерам отключать защиту Defender 18649Вторая волна червеобразной атаки Shai-Hulud прорвала защиту экосистем npm и Maven