Ssylka

Скрытый свет энергии: новое окно в мир тёмных экситонов

Ученые из Геттингенского университета, возглавляемые профессором Штефаном Матиасом, представили революционную методику, открывающую невиданные ранее возможности для изучения тёмных экситонов. Эти загадочные частицы, являющиеся парами электрона и «дырки», не излучают свет, но играют критически важную роль в формировании энергетических процессов на атомном уровне. Новая техника, названная «сверхбыстрой темнопольной импульсной микроскопией», позволяет с беспрецедентной точностью отслеживать образование и движение этих частиц, открывая путь к созданию более эффективных и совершенных технологий.
Скрытый свет энергии: новое окно в мир тёмных экситонов
Изображение носит иллюстративный характер

Тёмные экситоны, несмотря на свою «невидимость», являются ключевыми игроками в мире нанотехнологий. Они переносят энергию, не испуская фотонов, что делает их трудными для обнаружения традиционными методами. Тем не менее, именно эти частицы определяют фундаментальные свойства материалов, особенно в двухмерных структурах из полупроводниковых соединений, толщиной всего в несколько атомов. Углубленное понимание их поведения позволит радикально улучшить характеристики целого ряда устройств, от солнечных батарей и светодиодов до новейших сенсорных систем.

Исследование, опубликованное в журнале Nature Photonics, опирается на предыдущие работы научной группы по теоретическому моделированию тёмных экситонов. В данном исследовании, ведущую роль сыграл доктор Давид Шмитт, который является первым автором публикации. Его коллеги из исследовательской группы, включая доктора Марселя Ройцеля, участвовали в проведении экспериментальных работ. Разработанная методика была протестирована на материале, состоящем из диселенида вольфрама (WSe₂) и дисульфида молибдена (MoS₂), что позволило увидеть динамику тёмных экситонов в реальном времени и с беспрецедентной точностью.

Сверхбыстрая темнопольная импульсная микроскопия позволяет измерять динамику носителей заряда с потрясающей точностью. Ученым удалось установить, что тёмные экситоны формируются всего за 55 фемтосекунд, при этом пространственное разрешение метода достигает 480 нанометров. Столь высокая точность открывает новые горизонты для изучения того, как свойства образцов влияют на движение тёмных экситонов и, соответственно, на общие характеристики материалов. В рамках исследования также особое внимание уделяется кулоновскому взаимодействию, которое связывает электрон и дырку в экситоне, определяя его поведение и характеристики.

Использование сверхбыстрой темнопольной импульсной микроскопии может стать прорывом в области материаловедения. Знание того, как формируются и движутся тёмные экситоны, позволяет инженерам целенаправленно манипулировать свойствами материалов и создавать более эффективные устройства. Например, для солнечных панелей это может означать увеличение эффективности преобразования солнечной энергии в электрическую. А в светодиодных технологиях открытие может привести к разработке более ярких и энергоэффективных источников света. Новые детекторы, разработанные на основе полученных знаний, будут более чувствительными и точными.

Тёмные экситоны, оставаясь «невидимыми», несут в себе огромный потенциал для будущего развития технологий. Новая техника, разработанная в Геттингенском университете, является важным шагом на пути к раскрытию этого потенциала. Способность точно измерять и контролировать динамику этих загадочных частиц дает возможность кардинально изменить подходы к разработке материалов и устройств, которые будут определять наше будущее. Это исследование, по сути, является новой главой в понимании фундаментальных процессов, происходящих на микроскопическом уровне, и его последствия для современной науки и техники сложно переоценить.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...