Ssylka

Как эффективно контролировать качество металлолома при приемке?

Внедрение системы фотомониторинга металлолома на производстве столкнулось с рядом неожиданных препятствий. Изначальная идея заключалась в автоматизации процесса оценки качества лома, но на практике возникли сложности, связанные с нестандартной логистикой вагонов и их содержимым. Поезда могут меняться местами, вагоны – оказываться грузовиками, а технологические расцепы и разная длина вагонов искажали первоначальные расчеты.
Как эффективно контролировать качество металлолома при приемке?
Изображение носит иллюстративный характер

Система фотомониторинга состоит из нескольких нейросетей. Первая идентифицирует вагоны и магниты, определяя момент для съемки слоя лома. Вторая анализирует слои на предмет загрязнения, сигнализируя о превышении допустимого уровня. Третья оценивает соответствие лома стандартам, выявляя посторонние предметы. Возникшие сложности включали в себя необходимость учитывать зимние условия и нестандартные способы разгрузки (например, грейфером).

Оценка засорённости лома оказалась субъективной. Разброс оценок между специалистами достигал значительных величин, а один и тот же человек мог давать разные оценки одному и тому же слою в зависимости от времени дня и настроения. Для обучения нейросети использовался метод тройной оценки, и если разброс был большим, то вагон отбрасывался из обучающей выборки. В результате, объективность оценки была достигнута путем многократного обучения модели на тщательно подготовленных данных.

В конечном итоге, внедрение автоматизированной системы контроля качества лома позволило снизить количество поставок с засорённым ломом, уменьшив тем самым издержки производства. Модель стала третьей независимой стороной в спорах между поставщиками и приемщиками, обеспечив более объективную и стабильную оценку. Несмотря на первоначальные сложности и сюрпризы, решение оказалось рабочим и эффективным.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...