Ssylka

Адаптивный RAG: динамическое улучшение LLM для юридического NER

В юридической сфере, где точность и полнота данных критичны, использование больших языковых моделей (LLM) для извлечения именованных сущностей (NER) сталкивается с трудностями из-за специфической терминологии и иерархической структуры данных. Традиционный подход RAG (Retrieval-Augmented Generation) дополняется динамическим промптингом, где примеры для few-shot обучения подбираются не статически, а на основе семантического сходства с текущим документом.
Адаптивный RAG: динамическое улучшение LLM для юридического NER
Изображение носит иллюстративный характер

Применение динамического промптинга заключается в том, что сначала юридические тексты разбиваются на фрагменты и векторизуются, формируя базу данных примеров. Затем, при обработке нового документа, его фрагменты также векторизуются, и из базы данных извлекаются наиболее похожие примеры. Эти примеры, в сочетании с инструкциями и схемой данных, формируют промпт для LLM. Это позволяет модели адаптироваться к уникальным особенностям каждого документа.

Ключевыми моментами в динамическом промптинге являются выбор модели для формирования векторов (эмбеддингов) и определение оптимального размера фрагмента текста. Модель для эмбеддингов должна обеспечивать баланс между качеством векторных представлений и скоростью обработки. Оптимальный размер фрагмента должен содержать достаточно контекста, но не быть чрезмерно большим, чтобы не снижать скорость и качество работы системы.

Динамический промптинг обеспечивает улучшение качества извлечения юридических фактов и ускоряет процесс работы над ошибками. Подход масштабируем и легко адаптируется к новым типам документов. Применение такого метода снижает рутинную нагрузку, связанную с подбором примеров, и повышает точность NER.


Новое на сайте

18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года? 18667Декабрьское обновление безопасности Android устраняет 107 уязвимостей и две угрозы... 18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода