Ssylka

Как PyTorch Управляет Тензорами и Вычислениями

В основе PyTorch лежит понятие тензора как многомерного массива, чьи данные хранятся в одномерном массиве. Для представления формы и доступа к элементам используются атрибуты shape и stride. Операция транспонирования создает «вид» на те же данные, а не копию. Изменение типа данных создаёт копию тензора. Методы .view() и .reshape() используются для изменения формы тензора, при этом .view() создает представление, а .reshape() может и копировать данные.
Как PyTorch Управляет Тензорами и Вычислениями
Изображение носит иллюстративный характер

Широковещание в PyTorch позволяет выполнять операции с тензорами разных форм без копирования данных. Градиенты в таком случае накапливаются в меньших измерениях. Перемножение матриц обрабатывается с учетом широковещания, а фактически является пакетным умножением.

Движок автоматического дифференцирования строит граф вычислений, опираясь на производные базовых скалярных операций. Операции вроде изменения формы влияют на градиенты аналогично тому, как они влияют на значения тензора.

Для оптимизации вычислений применяются транспонирование и блочное умножение матриц. PyTorch не хранит промежуточные активации, которые не требуются для обратного распространения. Пакетная обработка позволяет обрабатывать несколько операций одновременно.

Транспонирование: Операция .t() возвращает view (представление) на те же данные, а не создаёт новую копию. Изменения в одном view влияют на другой.

Типы данных: Приведение типов данных (например, из int64 в float16) создаёт новый тензор с копией данных.

Хранилище данных: Данные в PyTorch хранятся в виде одномерного массива (torch.Storage), а форма и шаг (stride) используются для доступа к элементам.

Stride: Шаг определяет, как двигаться по одномерному массиву для доступа к элементам с разными индексами в многомерном тензоре.

.view() vs.reshape(): .view() создаёт представление (view) с той же памятью, а .reshape() может создавать копию данных при несовместимости форм.

Широковещание (Broadcasting): Применяется при операциях с тензорами разных форм, и не копирует данные, а лишь ссылается на существующие элементы. При широковещании градиенты накапливаются по элементам в меньшем измерении.

Перемножение матриц: Осуществляется с учетом широковещания оставшихся измерений. Фактически, происходит пакетное перемножение матриц.

Обратное распространение: Строится на производных базовых скалярных операций. Операции, не меняющие значения, аналогично воздействуют и на градиенты.

Оптимизация перемножения матриц: Транспонирование и блочное умножение могут повысить производительность, уменьшая промахи кэша.

Оптимизация памяти: PyTorch не хранит промежуточные активации, если они не требуются для обратного распространения.

Пакетная обработка: Перемножение матриц обрабатывает несколько операций одновременно.


Новое на сайте

18667Декабрьское обновление безопасности Android устраняет 107 уязвимостей и две угрозы... 18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r