Ssylka

Генеративно-состязательные сети и диффузионные модели в нейрографике

Генеративно-состязательные сети (GAN) и диффузионные модели представляют собой два различных подхода к созданию изображений с использованием нейронных сетей. GAN работают по принципу состязания двух сетей: генератора, который создает изображения из случайного шума, и дискриминатора, который оценивает реалистичность сгенерированных изображений. Генератор стремится обмануть дискриминатор, создавая всё более реалистичные изображения, в то время как дискриминатор пытается всё лучше отличать поддельные изображения от реальных. Процесс обучения продолжается до тех пор, пока генератор не начнет создавать изображения, которые дискриминатор не может отличить от настоящих.
Генеративно-состязательные сети и диффузионные модели в нейрографике
Изображение носит иллюстративный характер

Диффузионные модели, такие как Stable Diffusion, используют иной принцип. Они начинают с изображения, которое постепенно зашумляется до полного хаоса, а затем обучаются восстанавливать исходное изображение, удаляя шум. Постепенно модель изучает процесс перехода от случайного шума к осмысленному изображению. Модели этого типа могут генерировать изображения по текстовому описанию, дорисовывать их, менять фон и стиль.

Для начала экспериментов с GAN можно использовать такие библиотеки, как PyTorch и TensorFlow/Keras, а для диффузионных моделей – diffusers от Hugging Face. В качестве учебных датасетов подойдут MNIST, CIFAR-10 и CelebA. Обучение GAN может быть нестабильным и подвержено переобучению, что требует внимания к настройке гиперпараметров. Для получения более качественных результатов с диффузионными моделями стоит использовать подходящие подсказки (промпты), варьировать количество шагов и использовать разные семплеры.


Новое на сайте

18695Как уязвимость в DesktopDirect позволяет хакерам внедрять веб-оболочки в шлюзы Array... 18694Зачем строители древнего Шимао замуровывали в фундамент десятки мужских черепов? 18693Способен ли нейротоксин перезагрузить мозг и вылечить ленивый глаз? 18692Самый мощный звездопад 2025 года: полное руководство по наблюдению потока Геминиды 18691Рекордное число окаменелых следов динозавров и плавательных дорожек обнаружено в Боливии 18690Как научиться танцевать с неизбежными системами жизни и оставаться любопытным до... 18689Почему в 2025 году традиционные стратегии веб-безопасности рухнули под натиском ИИ и... 18688Группировка GoldFactory инфицировала тысячи устройств в Азии через модифицированные... 18687Кем на самом деле были мифические «покорители неба» и как генетика раскрыла тайну висячих... 18686Астрономы обнаружили крупнейшую вращающуюся структуру во вселенной с 5,5 миллионов... 18685Критическая уязвимость React Server Components с максимальным рейтингом опасности... 18684Критическая уязвимость в плагине King Addons для Elementor позволяет хакерам получать... 18683Столетний температурный рекорд долины смерти оказался результатом человеческой ошибки 18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс?