Ssylka

Как машинное обучение меняет будущее предсказания кристаллических структур?

Современная наука о материалах стоит на пороге новой эры благодаря алгоритму ShotgunCSP, созданному Институтом статистической математики и корпорацией Panasonic Holdings. Этот алгоритм, использующий глубокие методы машинного обучения, совершил прорыв в задаче предсказания кристаллических структур — одной из важнейших и старейших проблем материаловедения, уходящей корнями в начало XX века.
Как машинное обучение меняет будущее предсказания кристаллических структур?
Изображение носит иллюстративный характер

Цель предсказания кристаллической структуры (CSP) — определить, какие стабильные или метастабильные формы может принимать соединение при заданных условиях. Традиционно для этого требовались трудоемкие вычисления энергии с помощью методов первого принципа, чаще всего основанные на теории плотности функционала (DFT). Классические алгоритмы, такие как генетические, модифицировали атомные конфигурации и искали глобальные и локальные минимумы энергии. Эти методы хорошо работали для небольших систем, однако сталкивались с проблемой взрывного роста вычислительных затрат при увеличении числа атомов в элементарной ячейке (30–40 и более атомов), что делало невозможным полный перебор всех вариантов.

Согласно последним бенчмаркам, существующие CSP-алгоритмы могут правильно предсказывать менее 50% известных кристаллических систем, особенно серьезные затруднения возникают при работе с большими или сложными соединениями. Основным ограничением оставался огромный объем расчетов, требующихся для перебора всех возможных конфигураций.

ShotgunCSP кардинально меняет ситуацию благодаря двум главным инновациям. Во-первых, алгоритм использует машинное обучение для точного предсказания симметрии кристаллов — пространственных групп (всего их известно 230) и позиций Вайкоффа, которые определяют допустимые размещения атомов в рамках каждой группы. Модель, обученная на обширной базе данных кристаллических структур, способна сузить список возможных пространственных групп до 30 наиболее вероятных, практически всегда охватывая реальную симметрию искомой структуры.

Во-вторых, ShotgunCSP реализует последовательный рабочий процесс, состоящий из нескольких этапов: на первом шаге с помощью методов трансферного обучения формируется предсказатель энергии, имитирующий сложные расчеты первого принципа на основе ограниченного объема данных. Далее специально разработанный генератор структур создает наиболее перспективные виртуальные кристаллы, которые затем проходят отбор с помощью энергетического предсказателя. На заключительном этапе остаются только наиболее вероятные кандидаты, для которых проводится окончательное уточнение энергии классическим методом DFT, и выбирается структура с наименьшей энергией. Название "ShotgunCSP" подчеркивает стратегию широкого охвата возможных вариантов с последующим детальным анализом лишь лучших «попаданий».

В результате такой подход позволяет радикально сократить область поиска и вычислительные затраты. ShotgunCSP демонстрирует точность около 80% по всем кристаллическим системам, что существенно превосходит показатель менее 50% у предыдущих лидирующих методов, включая CSPML (также разработанный этой командой на основе элементного замещения).

Публикация в журнале npj Computational Materials подчеркивает значимость нового алгоритма для широкого круга применений — от проектирования полупроводников и аккумуляторов до создания новых лекарств, катализаторов, сверхпроводников и термоэлектрических материалов. Правильный прогноз кристаллической структуры напрямую определяет свойства вещества, а значит, ускоряет разработку новых материалов и снижает число дорогостоящих экспериментов.

Среди ключевых преимуществ алгоритма — простота архитектуры, отличная масштабируемость и высокая пригодность для параллельных вычислений. По мере роста вычислительных ресурсов ожидается дальнейшее повышение точности и эффективности ShotgunCSP, что открывает возможности для быстрого поиска новых материалов даже в экстремальных условиях температуры или давления.

Таким образом, использование машинного обучения для предсказания симметрии и энергетической стабильности кристаллов закладывает фундамент для качественного скачка в материаловедении и смежных областях науки и техники.


Новое на сайте

18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на... 18651Как обновление политик безопасности Microsoft Entra ID в 2026 году искоренит атаки 18650Архитектурная уязвимость Microsoft Teams позволяет хакерам отключать защиту Defender 18649Вторая волна червеобразной атаки Shai-Hulud прорвала защиту экосистем npm и Maven