Ssylka

Светоуправляемые органические кристаллы: машинное обучение раскрывает новую эру эффективности

Исследовательская группа из Университета Васэда разработала машинно-обучающую методику для оптимизации выходной силы фотоактивируемых органических кристаллов, что позволило достичь максимального блокирующего усилия в 37,0 мН — это на 73 раза эффективнее традиционных методов. Эти результаты опубликованы в журнале Digital Discovery.
Светоуправляемые органические кристаллы: машинное обучение раскрывает новую эру эффективности
Изображение носит иллюстративный характер

Фотоактивируемые кристаллы способны преобразовывать световую энергию в механическое движение, служа основой для дистанционно управляемых приводов. Такие материалы особенно актуальны для робототехники, медицинских устройств (микрохирургия, доставка лекарств) и контактно-независимых систем управления. Ключевой характеристикой выступает блокирующая сила — максимальное усилие деформации при полной фиксации кристалла, однако повышение этого показателя требует учета множества факторов, включая молекулярную структуру, свойства кристалла и условия испытаний.

Коллектив под руководством доцента Тацуи Танигути из Центра науки о данных Университета Васэда, а также Казуки Исизаки и профессора Тору Асаи из департамента передовых наук и инженерии, реализовал двухэтапный машинно-обучающий подход. Для отбора ключевых молекулярных субструктур применялась регрессия LASSO (метод отбора и сжатия признаков), а для эффективного выбора экспериментальных условий — байесовская оптимизация. Исследования проводились на обширной библиотеке производных салицилдимина, где алгоритмы обеспечили целенаправленный отбор образцов для реальных измерений силы.

В результате блокирующая сила новых кристаллов превзошла ранее известные значения в 3,7 раза. При этом подбор оптимальных материалов и условий стал минимум в 73 раза эффективнее по сравнению с классическим перебором. По словам д-ра Танигути, «машинное обучение упрощает поиск оптимальных молекул и экспериментальных параметров», а также «открывает путь к более совершенным, миниатюрным устройствам — от носимой электроники до аэрокосмической техники и дистанционного экологического мониторинга».

Реализация подобных фотоактивируемых приводов открывает возможности для медицинских манипуляторов, робототехники, энергоэффективных систем и устройств для работы в замкнутых или чувствительных средах. Использование светового излучения как экологически чистого источника энергии способствует чистому производству и позволяет создавать миниатюрные решения для хирургии, доставки препаратов и носимой электроники.

Внедрение машинного обучения в разработку фотоуправляемых материалов не только ускоряет трансформацию лабораторных прототипов в реальные устройства, но и существенно приближает их коммерческое применение.


Новое на сайте

18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру в... 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на... 18651Как обновление политик безопасности Microsoft Entra ID в 2026 году искоренит атаки 18650Архитектурная уязвимость Microsoft Teams позволяет хакерам отключать защиту Defender 18649Вторая волна червеобразной атаки Shai-Hulud прорвала защиту экосистем npm и Maven