Ssylka

Как новый каскадный интерферометр меняет будущее оптических технологий?

Физики из Гарвардской школы инженерных и прикладных наук (SEAS) разработали революционное устройство — каскадный интерферометр, который открывает новые возможности для управления светом. В отличие от традиционных интерферометров Маха-Цендера, новое устройство позволяет одновременно контролировать частоту, интенсивность и режим распространения света в компактном формате.
Как новый каскадный интерферометр меняет будущее оптических технологий?
Изображение носит иллюстративный характер

Исследование, опубликованное в престижном журнале Science Advances, возглавил постдокторант Цзиньшэн Лу под руководством Федерико Капассо, профессора прикладной физики имени Роберта Л. Уоллеса и старшего научного сотрудника по электротехнике имени Винтона Хейса. Все устройства были изготовлены в Центре наносистем Гарварда.

Традиционные интерферометры Маха-Цендера имеют существенные ограничения. Они разделяют световые лучи на два пути, но не могут одновременно контролировать различные аспекты света. Для комплексного управления светом требуется последовательное размещение нескольких интерферометров, что увеличивает размер системы и ограничивает передачу сигнала.

Новый каскадный интерферометр представляет собой переосмысление устройства Маха-Цендера, интегрированного в один волновод на кремниевой платформе. Ключевая инновация заключается в уникальном наноразмерном узоре решеток, вытравленных в волноводе. Эта конструкция создает множественные пути для сигнала в одном компактном устройстве.

«Наш интерферометр позволяет контролировать обмен энергией между различными модами света», — объясняет Цзиньшэн Лу. Это дает возможность точно формировать спектр света путем тонкой настройки интенсивности и характеристик световых волн. Свет может перемещаться через волновод в различных поперечных модах, создавая четкие, резкие линии цвета с определенными характеристиками.

Команда исследователей также разработала теоретическую основу для расширения физических принципов устройства на множество различных мод света, что открывает еще более широкие перспективы применения.

Потенциальные области применения каскадного интерферометра впечатляют своим разнообразием. Устройство может найти применение в передовых нанофотонных датчиках, квантовых вычислениях на чипе, волоконно-оптических коммуникационных сетях, газовых сенсорах и оптических компьютерах.

Способность одновременно контролировать амплитуду и фазу света (оптическое спектральное формирование) в одном компактном устройстве представляет собой значительный прорыв в области фотоники. Это открытие может стать ключевым элементом для следующего поколения оптических технологий, где точное управление светом имеет решающее значение.


Новое на сайте

18246Мог ли древний яд стать решающим фактором в эволюции человека? 18245Тайна колодца Мурсы: раны и днк раскрыли судьбу павших солдат 18244Битва за миллиардный сэндвич без корочки 18243Почему ваши расширения для VS Code могут оказаться шпионским по? 18242Как подать заявку FAFSA на 2026-27 учебный год и получить финансовую помощь? 18241Мог ли взлом F5 раскрыть уязвимости нулевого дня в продукте BIG-IP? 18240CVS завершает поглощение активов обанкротившейся сети Rite Aid 18239Nvidia, BlackRock и Microsoft покупают основу для глобального ИИ за $40 миллиардов 18238Действительно ли только род Homo создавал орудия труда? 18237Инженерный триумф: сотрудник Rivian вырастил тыкву-победителя 18236Процент с прибыли: как инвесторы создали новый источник финансирования для... 18235Почему синхронизируемые ключи доступа открывают двери для кибератак на предприятия? 18234Какова реальная цена суперсилы гриба из Super Mario? 18233Как люксовые бренды контролировали цены и почему за это поплатились? 18232Как диетическая кола растворила массу, вызванную лекарством для похудения