Ssylka

Революционный метод машинного обучения для моделирования сверхбольших атомных структур

Международная группа физиков из Университета Арканзаса, Нанкинского университета и Университета Люксембурга представила инновационный подход к моделированию атомных структур. В статье "Active learning of effective Hamiltonian for super-large-scale atomic structures", опубликованной в журнале npj Computational Materials, ученые описали метод, основанный на машинном обучении, который позволяет моделировать мезоскопические структуры, содержащие миллионы атомов.
Революционный метод машинного обучения для моделирования сверхбольших атомных структур
Изображение носит иллюстративный характер

Традиционные методы квантовой и классической механики имеют существенные ограничения при работе с крупномасштабными атомными структурами. Новый подход преодолевает эти ограничения, используя эффективный гамильтониан – математическое выражение энергии системы с различными членами связи. Ключевое преимущество метода заключается в автоматизации расчета параметров с помощью алгоритмов машинного обучения.

Вычисление параметров для эффективного гамильтониана традиционно представляло собой сложную задачу, требующую глубоких теоретических знаний и значительных вычислительных ресурсов. Разработанный метод предлагает универсальный и автоматический способ вычисления этих параметров для сложных систем, что значительно упрощает процесс моделирования.

Новая технология открывает широкие возможности для изучения мезоскопических структур в сегнетоэлектриках и диэлектриках. Это особенно важно для понимания свойств материалов на промежуточных масштабах, где квантовые эффекты все еще играют существенную роль, но структуры слишком велики для прямых квантово-механических расчетов.

Исследователи подчеркивают, что их метод является одним из самых быстрых вычислительных подходов на атомном уровне. Это позволяет ученым проектировать новые материалы с заданными свойствами, такими как сегнетоэлектрические и пьезоэлектрические характеристики, что имеет огромное значение для развития современных технологий.

В качестве следующего шага команда планирует предложить общий эффективный гамильтониан, основанный на решетчатой функции Ванье и принципах симметрии. Это позволит еще больше расширить возможности метода и повысить его универсальность для различных типов материалов и структур.

Будущие разработки метода будут направлены на моделирование структурных искажений и фазовых переходов, а также на симуляцию дополнительных свойств материалов, включая термические характеристики. Это открывает новые горизонты для материаловедения и физики конденсированного состояния, позволяя исследовать явления, которые ранее были недоступны для вычислительного анализа.


Новое на сайте

18247Зачем мозг в фазе быстрого сна стирает детали воспоминаний? 18246Мог ли древний яд стать решающим фактором в эволюции человека? 18245Тайна колодца Мурсы: раны и днк раскрыли судьбу павших солдат 18244Битва за миллиардный сэндвич без корочки 18243Почему ваши расширения для VS Code могут оказаться шпионским по? 18242Как подать заявку FAFSA на 2026-27 учебный год и получить финансовую помощь? 18241Мог ли взлом F5 раскрыть уязвимости нулевого дня в продукте BIG-IP? 18240CVS завершает поглощение активов обанкротившейся сети Rite Aid 18239Nvidia, BlackRock и Microsoft покупают основу для глобального ИИ за $40 миллиардов 18238Действительно ли только род Homo создавал орудия труда? 18237Инженерный триумф: сотрудник Rivian вырастил тыкву-победителя 18236Процент с прибыли: как инвесторы создали новый источник финансирования для... 18235Почему синхронизируемые ключи доступа открывают двери для кибератак на предприятия?