Ssylka

Прорыв в квантовых материалах: световые методы выявили состояние квантовой спиновой жидкости

Исследователи из Ульсанского национального института науки и технологий (UNIST) совершили значительный прорыв в области квантовых материалов, обнаружив следы состояния квантовой спиновой жидкости Китаева (Kitaev QSL) с помощью света. Это открытие, опубликованное в престижном журнале Nature Communications, может проложить путь к созданию безошибочных крупномасштабных квантовых компьютеров.
Прорыв в квантовых материалах: световые методы выявили состояние квантовой спиновой жидкости
Изображение носит иллюстративный характер

Научная группа под руководством профессора Чанги Сона из Департамента физики UNIST в сотрудничестве с командой профессора Дже Хун Кима из Университета Йонсей и группой профессора Юнг-Ву Ю из Департамента материаловедения и инженерии UNIST успешно зафиксировала спиновые флуктуации, указывающие на состояние Китаева QSL в тонкопленочных оксидах на основе кобальта.

Квантовая спиновая жидкость Китаева представляет собой особое квантовое состояние, в котором спиновые частицы остаются неупорядоченными даже при низких температурах. Это свойство делает такие материалы чрезвычайно перспективными для квантовых вычислений, поскольку они могут обеспечить стабильность квантовых состояний, необходимую для безошибочных вычислений.

Исследователи изучали оксиды на основе кобальта в формате тонких пленок толщиной всего 20 нанометров. Инновационный метод заключался в анализе экситонных частиц, генерируемых при освещении тонкой пленки светом. Этот подход позволил преодолеть ограничения традиционных нейтронных методов анализа, которые малоэффективны для тонких пленок, необходимых в квантовых вычислительных устройствах.

Ключевым открытием стало обнаружение спиновых флуктуаций, которые сохранялись выше температуры Нееля (16 Кельвинов или -257,15°C). Полученные данные указывают на то, что эти флуктуации характерны именно для состояния квантовой спиновой жидкости, а не являются просто результатом тепловых эффектов. Теоретические расчеты подтвердили наличие сильных взаимодействий Китаева в исследуемом материале.

«Наше исследование демонстрирует, что характеристики квантовой спиновой жидкости Китаева могут проявляться в тонкопленочных оксидах на основе кобальта, что открывает новые возможности для разработки квантовых вычислительных материалов», — отмечают исследователи.

Значимость этого открытия выходит за рамки теоретической физики. Разработанный световой аналитический метод может существенно ускорить развитие материалов для квантовых вычислений. Кроме того, использование тонких пленок вместо объемных кристаллов делает возможным интеграцию этих материалов в современные полупроводниковые устройства.

Это исследование представляет собой важный шаг на пути к созданию практических квантовых компьютеров, способных выполнять сложные вычисления без ошибок, что может революционизировать области от криптографии до моделирования сложных систем и разработки новых лекарств.


Новое на сайте

18247Зачем мозг в фазе быстрого сна стирает детали воспоминаний? 18246Мог ли древний яд стать решающим фактором в эволюции человека? 18245Тайна колодца Мурсы: раны и днк раскрыли судьбу павших солдат 18244Битва за миллиардный сэндвич без корочки 18243Почему ваши расширения для VS Code могут оказаться шпионским по? 18242Как подать заявку FAFSA на 2026-27 учебный год и получить финансовую помощь? 18241Мог ли взлом F5 раскрыть уязвимости нулевого дня в продукте BIG-IP? 18240CVS завершает поглощение активов обанкротившейся сети Rite Aid 18239Nvidia, BlackRock и Microsoft покупают основу для глобального ИИ за $40 миллиардов 18238Действительно ли только род Homo создавал орудия труда? 18237Инженерный триумф: сотрудник Rivian вырастил тыкву-победителя 18236Процент с прибыли: как инвесторы создали новый источник финансирования для... 18235Почему синхронизируемые ключи доступа открывают двери для кибератак на предприятия?