Ssylka

Прорыв в квантовых материалах: световые методы выявили состояние квантовой спиновой жидкости

Исследователи из Ульсанского национального института науки и технологий (UNIST) совершили значительный прорыв в области квантовых материалов, обнаружив следы состояния квантовой спиновой жидкости Китаева (Kitaev QSL) с помощью света. Это открытие, опубликованное в престижном журнале Nature Communications, может проложить путь к созданию безошибочных крупномасштабных квантовых компьютеров.
Прорыв в квантовых материалах: световые методы выявили состояние квантовой спиновой жидкости
Изображение носит иллюстративный характер

Научная группа под руководством профессора Чанги Сона из Департамента физики UNIST в сотрудничестве с командой профессора Дже Хун Кима из Университета Йонсей и группой профессора Юнг-Ву Ю из Департамента материаловедения и инженерии UNIST успешно зафиксировала спиновые флуктуации, указывающие на состояние Китаева QSL в тонкопленочных оксидах на основе кобальта.

Квантовая спиновая жидкость Китаева представляет собой особое квантовое состояние, в котором спиновые частицы остаются неупорядоченными даже при низких температурах. Это свойство делает такие материалы чрезвычайно перспективными для квантовых вычислений, поскольку они могут обеспечить стабильность квантовых состояний, необходимую для безошибочных вычислений.

Исследователи изучали оксиды на основе кобальта в формате тонких пленок толщиной всего 20 нанометров. Инновационный метод заключался в анализе экситонных частиц, генерируемых при освещении тонкой пленки светом. Этот подход позволил преодолеть ограничения традиционных нейтронных методов анализа, которые малоэффективны для тонких пленок, необходимых в квантовых вычислительных устройствах.

Ключевым открытием стало обнаружение спиновых флуктуаций, которые сохранялись выше температуры Нееля (16 Кельвинов или -257,15°C). Полученные данные указывают на то, что эти флуктуации характерны именно для состояния квантовой спиновой жидкости, а не являются просто результатом тепловых эффектов. Теоретические расчеты подтвердили наличие сильных взаимодействий Китаева в исследуемом материале.

«Наше исследование демонстрирует, что характеристики квантовой спиновой жидкости Китаева могут проявляться в тонкопленочных оксидах на основе кобальта, что открывает новые возможности для разработки квантовых вычислительных материалов», — отмечают исследователи.

Значимость этого открытия выходит за рамки теоретической физики. Разработанный световой аналитический метод может существенно ускорить развитие материалов для квантовых вычислений. Кроме того, использование тонких пленок вместо объемных кристаллов делает возможным интеграцию этих материалов в современные полупроводниковые устройства.

Это исследование представляет собой важный шаг на пути к созданию практических квантовых компьютеров, способных выполнять сложные вычисления без ошибок, что может революционизировать области от криптографии до моделирования сложных систем и разработки новых лекарств.


Новое на сайте

16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira