Ssylka

Справляются ли современные модели с оценкой риска циклонов?

Систематический анализ, основанный на обзоре 94 исследований, впервые выявил серьезные недостатки в существующих методах оценки риска циклонов как в Австралии, так и во всем мире. В исследовании «Критический обзор моделей оценки риска ураганов и предсказательных схем», опубликованном в журнале Geoscience Frontiers, собраны данные, позволяющие критически оценить подходы к прогнозированию и управлению опасностями.
Справляются ли современные модели с оценкой риска циклонов?
Изображение носит иллюстративный характер

Ежегодно в мировом масштабе формируется свыше 80 циклонов, тайфунов и ураганов, при этом Австралия регулярно сталкивается с одними из самых мощных и разрушительных бурь. Эти природные явления представляют угрозу для жизни людей, наносят ущерб инфраструктуре и оказывают негативное влияние на экономику регионов.

В исследовании выделены шесть ключевых факторов, влияющих на риск возникновения ущерба: использование земель, уклоны, уровень осадков, высота над уровнем моря, плотность населения и качество почвы. Включение этих переменных в модели оценки риска способно существенно повысить точность прогнозов и обеспечить основу для более взвешенной политики в области защиты населения.

Анализ показал, что существующие модели часто сосредотачиваются исключительно на отдельных аспектах, таких как штормовые нагоны или паводки, и не учитывают сложное взаимодействие множества угроз. При этом приоритет отдается частоте циклонов, что не отражает реальный ущерб и долгосрочные последствия для сообществ.

Лишь 5% изученных исследований уделяют внимание эффективности мер по снижению риска, что указывает на существенный пробел в планировании защиты регионов от стихийных бедствий. Среди признанных мер — усовершенствование строительных норм, укрепление прибрежных оборон, создание систем раннего оповещения и грамотное планирование использования земель.

Отсутствие учета косвенных экономических последствий, таких как сбои в работе бизнеса и длительные финансовые убытки, дополнительно снижает эффективность существующих оценочных моделей. Этот аспект требует пристального внимания для минимизации долгосрочного ущерба и обеспечения экономической стабильности.

Применение методов искусственного интеллекта и машинного обучения предлагает новые возможности для повышения точности прогнозирования. Уже используются модели, такие как случайные леса и нейронные сети, а перспективное направление — развитие ансамблевых моделей, позволяющих адаптировать оценку риска под специфические региональные особенности.

Выдающийся профессор Бисваджит Прадан, руководитель Центра продвинутого моделирования и геопространственных информационных систем в Технологическом университете Сиднея, подчеркивает, что узкая специализация современных оценок оставляет сообщества уязвимыми. По его мнению, интеграция современных методов машинного обучения способна значительно улучшить точность прогнозов и усилить подготовленность к экстремальным погодным явлениям.

Полученные результаты играют важную роль в формировании будущих исследований и политики, направленных на повышение устойчивости к экстремальным климатическим рискам. Новые научные подходы позволят обеспечить более детальное понимание процессов, что в условиях изменяющегося климата особенно актуально для циклонозависимых регионов.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем