Ssylka

Нанодиа́монды в микрокаплях: прорыв квантовой сенсори́ки

Разработан новый инструмент химического анализа, объединяющий зеленый лазер, микроволны с энергией, сопоставимой с wi-fi, и диамантовую пыль, внедрованную в жидкие микрокапли. Метод обеспечивает точное, быстрое и чувствительное обнаружение даже мельчайших концентраций химических веществ, что открывает возможности для исследований на уровне отдельных клеток.
Нанодиа́монды в микрокаплях: прорыв квантовой сенсори́ки
Изображение носит иллюстративный характер

Впервые ученым удалось интегрировать нанодиа́монды в микрокапли, размеры которых в миллионы раз меньше дождевой капли. Технология демонстрирует высокую эффективность при использовании минимальных объемов образца и подтверждена результатами, опубликованными в журнале Science Advances в декабре.

Проект возглавил Эшок Аджой, научный сотрудник отдела химических наук лаборатории Лоуренс Беркли (Berkeley Lab) и доцент Университета Калифорнии в Беркли. В состав команды вошли аспирантка Адриша Саркар из UC Berkeley, постдокторант Зак Джонс и Дипти Танжоре, директор подразделения по разработке процессов передовых биотоплив и биопродуктов в Berkeley Lab. Эшок Аджой заметил: «Мы даже не были уверены, что наша методика сработает, но оказалось, что она удивительно проста и эффективна».

Основой метода является квантовая сенсорика, использующая эффекты, наблюдаемые на микроуровне. Модифицированные нанодиа́монды, в которых часть атомов углерода заменена на азот, создают «азотные вакансии», функционирующие как датчики. При воздействии зеленого лазера и микроволн данные датчики излучают свет, интенсивность которого меняется в зависимости от присутствующих химических соединений.

Особая методика с потоком микрокапель и модулированными микроволнами позволяет эффективно устранить фоновый шум, что значительно повышает точность измерений. Система превосходит существующие технологии при обнаружении следовых количеств парамагнитных веществ, таких как ионы гадолиния и стабилизированная радикальная молекула TEMPOL, чувствительная к кислороду. Анализ тысяч капель с затратами порядка 63 центов на количество диамантовой пыли делает метод экономически привлекательным.

Разрабатываемая технология предусматривает расширение спектра обнаруживаемых молекул, включая реактивные кислородные виды (ROS), кратковременные соединения, связанные с клеточным метаболизмом, старением и стрессовыми процессами. Применение метода позволит изучать клеточные процессы в режиме реального времени и создавать портативные диагностические системы для выявления вирусов и загрязнителей в воздухе и воде.

Каждая микрокапля функционирует как отдельная миниатюрная колба, что открывает перспективы создания саморегулирующихся биореакторов. Такие системы обеспечивают оптимальные условия для выращивания микроорганизмов, используемых в производстве лекарственных средств, биотоплива и пищевых ингредиентов. Дипти Танжоре отметила: «Можно представить себе установку биореакторов в отдаленных регионах или даже в космосе для производства пищи, которую невозможно доставлять ежедневно. Наличие точных квантовых датчиков, дающих данные о поведении культуры микроорганизмов в реальном времени, является важным шагом к созданию саморегулирующегося биореактора».

Инновация стала результатом тесного сотрудничества специалистов в областях химии, микрофлюидики, бионаук и наук о Земле. Применение нанодиа́мондов в микрокаплях предоставляет возможность для создания высокоточных, экономичных и универсальных сенсорных систем, способных решать задачи диагностики, мониторинга окружающей среды и оптимизации промышленных процессов.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем