Ssylka

Как создать адаптивный фотонный гидрогель с изменяемым цветом?

Учёные, вдохновлённые природной архитектурой Bouligand, сумели разработать сверхпрочную, перенастраиваемую и механохромную фотонную гидрогель на основе целлюлозы, аналогичную структурам, применяемым при создании ударопрочных биопластиков, керамических бронежилетов и биомиметических сплавов.
Как создать адаптивный фотонный гидрогель с изменяемым цветом?
Изображение носит иллюстративный характер

Современные материалы традиционно состоят из одноуровневых хрупких блоков, что позволяет лишь частично улучшить их пластичность. Отсутствие многоступенчатых активных интерфейсов и возможности автономной адаптации приводит к ограниченной деформируемости и функциональности по сравнению с более динамичными системами.

Целью исследования стало создание материала с Bouligand-структурой, обладающего многоуровневыми активными интерфейсами, динамическим откликом и повышенной механической прочностью. Основной технический вызов заключался в том, чтобы обеспечить тонкую балансировку между малыми микроперемещениями для перенастройки структуры и сохранением общей стабильности материала.

Работа, опубликованная в журнале Materials Today, выполнена под руководством профессора Qing Guangyan из Дальянского института химической физики Китайской академии наук (DICP, CAS), что подчёркивает высокую научную значимость и практическую направленность исследования.

В основе инновационной методики лежит использование самоорганизации нанокристаллов целлюлозы (CNC) для создания устойчивой Bouligand-структуры. Достижение точного контроля за ориентацией матричной сети обеспечено за счёт процесса скольжения нанофибр и реконструкции водородных связей, активируемых воздействием воды.

Полученные фотонные гидрогели демонстрируют пятикратное увеличение прочности по сравнению с исходным материалом и обладают растяжимостью, превышающей 950%. Механохромный эффект позволяет материалу обратимо переключать цвет между красным и синим, при этом сохраняется стабильная электромеханическая чувствительность даже при многократном растяжении.

Особое внимание уделено практическому применению фотонного интерфейса, отличающегося высокой долговечностью и возможностью многократного восстановления функциональности посредством замачивания в воде всего за пять минут.

Профессор Qing Guangyan отметил: «Эта работа открывает новый путь для практического применения CNC», что позволяет говорить о широком спектре перспективных применений – от создания устойчивых биопластиков до разработки гибких электронных платформ и умных фотонных устройств.


Новое на сайте

18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас когнитивного... 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру 18661Как астероид 2024 YR4 стал первой исторической проверкой системы планетарной защиты и... 18660Агентные ИИ-браузеры как троянский конь новой эры кибербезопасности 18659Многовековая история изучения приливов от античных гипотез до синтеза Исаака Ньютона 18658Как выглядела защита от солнца римских легионеров в Египте 1600 лет назад? 18657Хакеры ToddyCat обновили арсенал для тотального взлома Outlook и Microsoft 365 18656Асимметрия безопасности: почему многомиллионные вложения в инструменты детекции не... 18655Как безопасно использовать репозитории Chocolatey и Winget, не подвергая инфраструктуру... 18654Масштабная утечка конфиденциальных данных через популярные онлайн-форматеры кода 18653Как расширение списка жертв взлома Gainsight связано с запуском вымогателя ShinySp1d3r 18652Как расширение Crypto Copilot незаметно похищает средства пользователей Solana на...