Ssylka

Как создать адаптивный фотонный гидрогель с изменяемым цветом?

Учёные, вдохновлённые природной архитектурой Bouligand, сумели разработать сверхпрочную, перенастраиваемую и механохромную фотонную гидрогель на основе целлюлозы, аналогичную структурам, применяемым при создании ударопрочных биопластиков, керамических бронежилетов и биомиметических сплавов.
Как создать адаптивный фотонный гидрогель с изменяемым цветом?
Изображение носит иллюстративный характер

Современные материалы традиционно состоят из одноуровневых хрупких блоков, что позволяет лишь частично улучшить их пластичность. Отсутствие многоступенчатых активных интерфейсов и возможности автономной адаптации приводит к ограниченной деформируемости и функциональности по сравнению с более динамичными системами.

Целью исследования стало создание материала с Bouligand-структурой, обладающего многоуровневыми активными интерфейсами, динамическим откликом и повышенной механической прочностью. Основной технический вызов заключался в том, чтобы обеспечить тонкую балансировку между малыми микроперемещениями для перенастройки структуры и сохранением общей стабильности материала.

Работа, опубликованная в журнале Materials Today, выполнена под руководством профессора Qing Guangyan из Дальянского института химической физики Китайской академии наук (DICP, CAS), что подчёркивает высокую научную значимость и практическую направленность исследования.

В основе инновационной методики лежит использование самоорганизации нанокристаллов целлюлозы (CNC) для создания устойчивой Bouligand-структуры. Достижение точного контроля за ориентацией матричной сети обеспечено за счёт процесса скольжения нанофибр и реконструкции водородных связей, активируемых воздействием воды.

Полученные фотонные гидрогели демонстрируют пятикратное увеличение прочности по сравнению с исходным материалом и обладают растяжимостью, превышающей 950%. Механохромный эффект позволяет материалу обратимо переключать цвет между красным и синим, при этом сохраняется стабильная электромеханическая чувствительность даже при многократном растяжении.

Особое внимание уделено практическому применению фотонного интерфейса, отличающегося высокой долговечностью и возможностью многократного восстановления функциональности посредством замачивания в воде всего за пять минут.

Профессор Qing Guangyan отметил: «Эта работа открывает новый путь для практического применения CNC», что позволяет говорить о широком спектре перспективных применений – от создания устойчивых биопластиков до разработки гибких электронных платформ и умных фотонных устройств.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем