Ssylka

Можно ли предсказать коррозию для разработки прочных материалов?

Фантастические сцены разваливающейся инфраструктуры, знакомые по фильмам-антиутопиям, отражают не вымысел, а реальную проблему: коррозия разрушает здания, мосты и автомобили, становясь одной из самых дорогостоящих угроз для экономики.
Можно ли предсказать коррозию для разработки прочных материалов?
Изображение носит иллюстративный характер

Глобальные затраты на борьбу с коррозией оцениваются в триллионы долларов, а в Соединённых Штатах до 3% валового внутреннего продукта расходуется на устранение отказов материалов, вызванных этим процессом.

Учёные из Национальной лаборатории Лоуренса Ливермора (LLNL) работают над прогнозированием коррозионных процессов, чтобы на ранней стадии проектировать более прочные и долговечные материалы. Результаты исследований опубликованы в журнале Nature Communications.

Брэндон Вуд из LLNL подчёркивает, что традиционные представления о коррозии базировались на исторических данных, связанных с определёнными металлическими составами и технологиями обработки, и любые изменения в этих параметрах делают прежние прогнозы ненадёжными – «все ставки пропадают».

Пэнхэ Сяо, бывший постдокторант LLNL, ныне сотрудничающий с Dalhousie University, разработал многомасштабные симуляции, отражающие динамику роста, растворения и изменений состава оксидных плёнок под влиянием факторов, таких как pH и напряжение. Экспериментальные исследования, проведённые под руководством Криса Орми из LLNL, дали важное представление о промежуточном режиме напряжения, ранее остававшемся малоизученным.

Применение продвинутого кинетического моделирования позволило ускорить симуляцию коррозионных процессов с учётом как состава материалов, так и рабочих условий. Особое внимание уделено естественной оксидной плёнке, которая играет роль защитного барьера, и изменениям её свойств (растворение, трещинообразование, увеличение проницаемости) приводящим к разрушениям.

Анализ включал три режима напряжения: низкий, высокий и промежуточный. В случае промежуточного режима исследователи обнаружили конкуренцию между процессами растворения и повторного осаждения, когда молекулы покидают поверхность, перемешиваются и вновь осаждаются, изменяя внешний вид и защитные свойства плёнки.

Интеграция методов симуляции с элементами машинного обучения позволила создать модель, способную прогнозировать время и механизмы коррозии в сложных условиях, что имеет практическое значение для строительства кораблей, мостов и других критичных объектов, где микробатарейные эффекты усиливают процесс разрушения.


Новое на сайте

18764Рекордный семичасовой космический взрыв не поддается объяснению существующими научными... 18763Зачем черепахам панцирь: для защиты или рытья нор, и все ли умеют в нем прятаться? 18762Почему критическая уязвимость шестилетней давности в роутерах Sierra Wireless угрожает... 18761Как подросток пережил атаку льва 6200 лет назад и почему его похоронили как опасного... 18760Почему случайные травмы превращаются в вечные рисунки на теле? 18759Почему Apple экстренно закрывает уязвимости, используемые для атак на конкретных людей? 18758Какие открытия от Марса до темной материи меняют научную картину мира? 18757Как ультрагорячая супер-Земля TOI-561 b сумела сохранить плотную атмосферу в... 18756Третий межзвездный странник 3I/ATLAS меняет цвет и проявляет аномальную активность 18754Раскопки виселицы XVI века и массовых захоронений казненных мятежников в Гренобле 18753Почему скрытая инфекция убила гигантского крокодила Кассиуса после 40 лет жизни в неволе? 18752Первая церемония Global Space Awards в Лондоне определила лидеров космической индустрии 18751Как новые фишинговые инструменты BlackForce, GhostFrame и гибридные атаки 2025 года... 18750Колоссальная «зеленая стена» Китая: полувековая битва с наступлением пустынь