Ssylka

Можно ли предсказать коррозию для разработки прочных материалов?

Фантастические сцены разваливающейся инфраструктуры, знакомые по фильмам-антиутопиям, отражают не вымысел, а реальную проблему: коррозия разрушает здания, мосты и автомобили, становясь одной из самых дорогостоящих угроз для экономики.
Можно ли предсказать коррозию для разработки прочных материалов?
Изображение носит иллюстративный характер

Глобальные затраты на борьбу с коррозией оцениваются в триллионы долларов, а в Соединённых Штатах до 3% валового внутреннего продукта расходуется на устранение отказов материалов, вызванных этим процессом.

Учёные из Национальной лаборатории Лоуренса Ливермора (LLNL) работают над прогнозированием коррозионных процессов, чтобы на ранней стадии проектировать более прочные и долговечные материалы. Результаты исследований опубликованы в журнале Nature Communications.

Брэндон Вуд из LLNL подчёркивает, что традиционные представления о коррозии базировались на исторических данных, связанных с определёнными металлическими составами и технологиями обработки, и любые изменения в этих параметрах делают прежние прогнозы ненадёжными – «все ставки пропадают».

Пэнхэ Сяо, бывший постдокторант LLNL, ныне сотрудничающий с Dalhousie University, разработал многомасштабные симуляции, отражающие динамику роста, растворения и изменений состава оксидных плёнок под влиянием факторов, таких как pH и напряжение. Экспериментальные исследования, проведённые под руководством Криса Орми из LLNL, дали важное представление о промежуточном режиме напряжения, ранее остававшемся малоизученным.

Применение продвинутого кинетического моделирования позволило ускорить симуляцию коррозионных процессов с учётом как состава материалов, так и рабочих условий. Особое внимание уделено естественной оксидной плёнке, которая играет роль защитного барьера, и изменениям её свойств (растворение, трещинообразование, увеличение проницаемости) приводящим к разрушениям.

Анализ включал три режима напряжения: низкий, высокий и промежуточный. В случае промежуточного режима исследователи обнаружили конкуренцию между процессами растворения и повторного осаждения, когда молекулы покидают поверхность, перемешиваются и вновь осаждаются, изменяя внешний вид и защитные свойства плёнки.

Интеграция методов симуляции с элементами машинного обучения позволила создать модель, способную прогнозировать время и механизмы коррозии в сложных условиях, что имеет практическое значение для строительства кораблей, мостов и других критичных объектов, где микробатарейные эффекты усиливают процесс разрушения.


Новое на сайте

18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда 18669SecAlerts обеспечивает мгновенный мониторинг уязвимостей без сетевого сканирования 18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года?