Ssylka

GORK: ключ к управлению водным балансом растений

Микроскопические стимы на поверхности листьев обеспечивают газообмен и контроль водных потерь, а охранные клетки, окружающие стимы, регулируют тургор посредством ионного транспорта, где основным осмотическим солютом является ионный калий.
GORK: ключ к управлению водным балансом растений
Изображение носит иллюстративный характер

Открытие и закрытие стим происходит в ответ на внешние сигналы, такие как свет, влажность и температура, что позволяет растениям оптимизировать водный баланс и минимизировать испарения.

Канал GORK у Arabidopsis представляет собой калиевый канал с выходящей ретракцией, который активируется в процессе закрытия стим за счёт эффлюкса калия. Модификация его структуры демонстрирует потенциал для биоинженерии, направленной на повышение углеродного ассимации и улучшение водной эффективности растений.

Исследование, опубликованное в Nature Communications, выполнено совместными усилиями Центра передового опыта молекулярной науки растений Китайской академии наук и Университета Глазго. Комбинированный структурный и функциональный анализ позволил детально изучить механизмы работы канала GORK.

С применением крио-электронной микроскопии были получены высокоразрешённые структуры канала в закрытом и пре-открытом состояниях. Установлено, что GORK образует гомотетрафер с доменами трансмембранного порового комплекса (PD), датчика напряжения (VSD) и цитозольными участками, включающими C-связующий домен, домен гомологии связывания циклических нуклеотидов (CNBHD) и домен с анкириновыми повторами (ANK).

Функциональный анализ выявил два критических узла сцепления: изменения на первом узле, вызванные мутациями, уменьшают энергетические барьеры активации, ускоряют процесс открытия и замедляют деактивацию, тогда как усечения на втором узле дестабилизируют взаимодействие между аминоконцом и CNBHD, способствуя пре-открытому состоянию. Лигандоподобные взаимодействия внутри домена CNBHD делают механизм открытия независимым от циклических нуклеотидов cAMP и cGMP.

Полученные данные демонстрируют многоступенчатый механизм, включающий частично независимые конформационные переходы, регулирующие активность канала. Выявленные структурные особенности открывают возможность выявления новых целей для оптимизации работы GORK с целью создания растений с улучшенной способностью к управлению водным режимом.

Новый уровень понимания механизмов работы канала GORK предоставляет практические рекомендации для разработки биоинженерных методов, направленных на повышение эффективности контроля водного баланса и углеродного ассимации, что имеет значение для устойчивости растений в изменяющихся климатических условиях.


Новое на сайте

18682Почему пользователи чаще эксплуатируют алгоритмы с «женскими» признаками, чем с... 18681Как превратить подрывную технологию ИИ в контролируемый стратегический ресурс? 18680Телескоп Джеймс Уэбб раскрыл детали стремительного разрушения атмосферы уникальной... 18679Почему диета из сырых лягушек привела к тяжелому поражению легких? 18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда 18669SecAlerts обеспечивает мгновенный мониторинг уязвимостей без сетевого сканирования 18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года?