Ssylka

Квантовая гармония столкновений

Исследования столкновений молекул с поверхностями демонстрируют, что за кажущимся хаосом скрываются строгие законы квантовой механики, отмечающие столетие её открытия. Результаты, опубликованные в журнале Science, подтверждают значимость квантового интерференционного эффекта и симметрии в управлении молекулярным поведением.
Квантовая гармония столкновений
Изображение носит иллюстративный характер

При взаимодействии молекул с атомами поверхности происходит обмен энергией и импульсом, причем стандартные принципы классической физики оказываются недостаточными для описания столь сложных процессов. Именно квантовые эффекты позволяют объяснить усиление или ослабление отдельных энергетических переходов.

Группа Раинера Бека из EPFL совместно с учеными из Германии и Соединенных Штатов применила лазерную технологию для контроля квантовых состояний метана (CH4). С использованием насоса-лазера молекулы переводили в конкретное вибрационно-вращательное состояние перед их направлением на поверхность.

Подготовленные молекулы метана направлялись к специально обработанной золотой поверхности Au(111), отличающейся атомарной гладкостью и химической инертностью. Ультра-высокий вакуум, в котором проводились эксперименты, исключал влияние внешних загрязнений, гарантируя чистоту наблюдаемых эффектов.

Квантовый интерференционный эффект проявляется через перекрытие различных маршрутов, по которым могут двигаться молекулы. При несовместимости симметрий квантовых состояний интерференционные пути полностью компенсируются, препятствуя переходу, тогда как совместимые состояния приводят к усилению эффектов и появлению четких переходов.

Аналогия с классическим экспериментом с двойной щелью помогает визуализировать наблюдаемые эффекты: в отличие от влияния интерференции на угловое распределение частиц, здесь она определяет вращательные и вибрационные состояния молекул, непосредственно влияя на дальнейшую динамику столкновений.

После взаимодействия квантовое состояние молекул определялось с помощью тэгирующего лазера, настроенного на конкретные энергетические уровни. Измерения проводились по изменению температуры с помощью высокочувствительного болометра, что позволило точно зафиксировать квантовые переходы после столкновения.

Наблюдаемые интерференционные картины подтверждают, что квантовая интерференция и симметрия играют решающую роль в процессах обмена энергией и импульсом между молекулами и поверхностями. Полученные данные открывают новые возможности для разработки технологий в области поверхностной химии, создания более эффективных катализаторов и оптимизации промышленных процессов.


Новое на сайте

18678Способны ли три критические уязвимости в Picklescan открыть дорогу атакам на цепочки... 18677Как поддельные инструменты EVM на crates.io открывали доступ к системам тысяч... 18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда 18669SecAlerts обеспечивает мгновенный мониторинг уязвимостей без сетевого сканирования 18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года? 18667Декабрьское обновление безопасности Android устраняет 107 уязвимостей и две угрозы... 18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас превосходства 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней...