Ssylka

Как GeoAggregator меняет подход к анализу геопространственных данных?

Ученые из Университета Глазго (Шотландия) разработали новую программную модель под названием "GeoAggregator", которая призвана сделать анализ геопространственных данных более экологичным и доступным. Соответствующая научная работа "GeoAggregator—An Efficient Transformer Model for Geo-spatial Tabular Data" представлена на Конференции по искусственному интеллекту AAAI.
Как GeoAggregator меняет подход к анализу геопространственных данных?
Изображение носит иллюстративный характер

Появление GeoAggregator обусловлено стремительным ростом объемов геопространственных данных, собираемых ежедневно с GPS-устройств и спутников. Существующие модели искусственного интеллекта и традиционные статистические методы зачастую не справляются с выявлением сложных пространственных взаимосвязей в таких массивных наборах данных.

GeoAggregator представляет собой облегченную трансформерную модель искусственного интеллекта, специально разработанную для эффективного анализа пространственной автокорреляции (влияния близлежащих мест друг на друга) и пространственной гетерогенности (изменения паттернов от одного места к другому). Модель работает быстрее, масштабируется лучше и требует меньше ресурсов по сравнению с традиционными моделями глубокого обучения, что делает ее более доступной для исследователей, политиков и малых/средних организаций.

Одна из ключевых особенностей GeoAggregator — механизм локального внимания с гауссовым смещением, который помогает модели фокусироваться на релевантных близлежащих точках данных, сохраняя при этом более широкий пространственный контекст. Это улучшает прогнозирование для различных задач, связанных с пространственными данными, включая прогнозирование загрязнения воздуха, тенденции цен на жилье и анализ распределения бедности.

Дополнительно разработчики внедрили механизм декартова внимания, который позволяет модели оставаться легковесной при сохранении высокой точности. Это обеспечивает эффективную обработку больших наборов данных без существенного снижения производительности.

GeoAggregator был протестирован на синтетических данных, прогнозах цен на жилье и оценках качества воздуха. Результаты показали, что модель работает так же хорошо или лучше, чем геостатистические методы, XGBoost и другие модели глубокого обучения, достигая высокой точности при меньших вычислительных затратах.

«От сделок с недвижимостью до покупок в продуктовых магазинах и бизнес-данных — если к информации привязано местоположение, это географические данные», — отмечает доктор Миншу Ван из Школы географических и наук о Земле Университета Глазго, соавтор исследования. "GeoAggregator представляет собой большой шаг вперед в повышении эффективности и доступности сложного анализа данных. Весь анализ данных был выполнен на одном ноутбуке».

Исследователи сделали свой код открытым, чтобы способствовать более широкому использованию и сотрудничеству. В настоящее время разрабатывается открытый Python-пакет, который сделает GeoAggregator свободно доступным для всех.

"GeoAggregator идеально подходит для малых и средних компаний, исследователей или образовательных целей с ограниченными ресурсами», — говорит Руи Дэн, ведущий автор работы. «Крупные организации также могут использовать его для сокращения потребления энергии и воды в рамках своих целей устойчивого развития».

Проект является частью продолжающегося докторского исследования Руи Дэна, направленного на улучшение возможностей модели в течение следующих двух лет. В работе также принимал участие доктор Цзици Ли, доцент Университета штата Флорида, почетный научный сотрудник и соруководитель Руи Дэна в Школе географических и наук о Земле.

Разработка GeoAggregator связана с партнерством EXAGeo — сотрудничеством между академическими кругами, промышленностью и правительственными партнерами, которое подготовит 65 новых докторантов для разработки и применения программного обеспечения для экологических приложений на вычислительных системах эксамасштаба следующего поколения.


Новое на сайте

19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч...