Ssylka

Как глубокое обучение ускоряет расчёты плазмы в ядерном синтезе?

В реакторах ядерного синтеза, часто именуемых «искусственным солнцем», высокотемпературная плазма состоит из отрицательно заряженных электронов и положительно заряженных ионов, столкновения между которыми требуют точного математического описания для устойчивого протекания реакции.
Как глубокое обучение ускоряет расчёты плазмы в ядерном синтезе?
Изображение носит иллюстративный характер

Профессор Джимин Ли и профессор Эйсунг Юн из кафедры ядерной инженерии в UNIST проводят исследования, результаты которых опубликованы в Journal of Computational Physics. Это сотрудничество представляет важный шаг в повышении эффективности моделирования процессов в плазме.

Классический метод описания кулоновских столкновений основывается на уравнении Фоккера–Планка–Ландау, традиционно решаемом итерационными алгоритмами, что требует значительных вычислительных ресурсов и времени.

Новейший подход – FPL-net – использует глубокое обучение для однократного вычисления нелинейного оператора столкновений, обеспечивая ускорение расчётов в 1000 раз при исключительной точности с погрешностью всего 0,00001.

Особое внимание уделено сохранению физически значимых величин: плотности, импульса и энергии, что достигается интеграцией специальных функций в процесс обучения искусственного интеллекта.

Симуляции теплового равновесия подтвердили, что накопление ошибок без применения технологии FPL-net препятствует корректному установлению равновесия, демонстрируя эффективность нового метода.

Использование графических процессоров (GPU) в сочетании с алгоритмами глубокого обучения кардинально снижает время вычислений по сравнению с традиционными симуляционными кодами на CPU, что открывает перспективы для подробного турбулентного анализа в реальных токамаках и развития технологий цифровых двойников.

На текущем этапе исследования модель ориентирована на электронную плазму, однако дальнейшие работы планируется расширить на более сложные условия с присутствием различных примесей, что позволит ещё глубже понять динамику ядерного синтеза.


Новое на сайте

18676Закон максимальной случайности и универсальная математика разрушения материалов 18675Символ падения власти: тайна древнего захоронения женщины с перевернутой диадемой 18674Индия вводит жесткую привязку мессенджеров к активным SIM-картам для борьбы с... 18673Почему вернувшаяся кампания GlassWorm угрожает разработчикам через 24 вредоносных... 18672Способен ли простой текстовый промпт скрыть вредоносное по в репозитории от проверки... 18671Уникальная операция по захвату северокорейских хакеров Lazarus в виртуальную ловушку в... 18670Уникальный погребальный ритуал времен царства керма обнаружен в суданской пустыне Байуда 18669SecAlerts обеспечивает мгновенный мониторинг уязвимостей без сетевого сканирования 18668Чем уникальна самая высокая «холодная» суперлуна декабря 2025 года? 18667Декабрьское обновление безопасности Android устраняет 107 уязвимостей и две угрозы... 18666Почему мы отрицаем реальность, когда искусственный интеллект уже лишил нас превосходства 18665Химический след Тейи раскрыл тайну происхождения луны в ранней солнечной системе 18664Раскрывает ли извергающаяся межзвездная комета 3I/ATLAS химические тайны древней... 18663Масштабная кампания ShadyPanda заразила миллионы браузеров через официальные обновления 18662Как помидорные бои и персонажи Pixar помогают лидерам превратить корпоративную культуру