Группа исследователей под руководством профессора Самеха Тавфика разработала инновационную технологию 3D-печати, позволяющую создавать микроволокна диаметром всего 1,5 микрона. Это достижение, описанное в журнале Nature Communications, в десять раз превосходит предыдущий технологический предел в 16 микрон.

Ключевым элементом новой технологии стало использование гидрогеля в качестве поддерживающей среды для печати. Такой подход устраняет необходимость в дополнительных опорных структурах и позволяет многократно использовать гель для последующих отпечатков. Исследовательская команда, включающая профессора Рэнди Эволдта, докторанта М. Танвера Хоссейна и доктора Вонсика Эома, модифицировала как состав геля, так и печатающие чернила.
Технология вдохновлена природными структурами, такими как паутина, слизевые нити миног и тончайшие сенсорные волоски живых организмов. Профессор Дуглас Фадж из Университета Чапмана, участвовавший в исследовании, отмечает уникальную способность метода воспроизводить сложные микроструктуры, встречающиеся в природе.
Новый метод печати отличается практически мгновенным отверждением материала и возможностью параллельной печати несколькими соплами. Это позволяет создавать сложные трехмерные структуры, включая спиральные пружины и другие замысловатые формы, не подверженные воздействию гравитации.
В отличие от традиционных методов 3D-печати, где объекты создаются послойно на воздухе, новая технология погруженной печати с обменом растворителя обеспечивает более точное воспроизведение мельчайших деталей. Это открывает широкие перспективы для создания биоинспирированных материалов и структур.
Разработанная технология преодолевает фундаментальные ограничения conventional 3D-печати и создает основу для производства сложных микроструктур, выходящих за рамки возможностей традиционного полупроводникового производства. Особую ценность представляет способность воспроизводить волосоподобные структуры с беспрецедентной точностью.
Статья "Fast 3D printing of fine, continuous, and soft fibers via embedded solvent exchange" демонстрирует потенциал новой технологии для революционных изменений в производстве передовых материалов и микроструктур, вдохновленных природными системами.

Изображение носит иллюстративный характер
Ключевым элементом новой технологии стало использование гидрогеля в качестве поддерживающей среды для печати. Такой подход устраняет необходимость в дополнительных опорных структурах и позволяет многократно использовать гель для последующих отпечатков. Исследовательская команда, включающая профессора Рэнди Эволдта, докторанта М. Танвера Хоссейна и доктора Вонсика Эома, модифицировала как состав геля, так и печатающие чернила.
Технология вдохновлена природными структурами, такими как паутина, слизевые нити миног и тончайшие сенсорные волоски живых организмов. Профессор Дуглас Фадж из Университета Чапмана, участвовавший в исследовании, отмечает уникальную способность метода воспроизводить сложные микроструктуры, встречающиеся в природе.
Новый метод печати отличается практически мгновенным отверждением материала и возможностью параллельной печати несколькими соплами. Это позволяет создавать сложные трехмерные структуры, включая спиральные пружины и другие замысловатые формы, не подверженные воздействию гравитации.
В отличие от традиционных методов 3D-печати, где объекты создаются послойно на воздухе, новая технология погруженной печати с обменом растворителя обеспечивает более точное воспроизведение мельчайших деталей. Это открывает широкие перспективы для создания биоинспирированных материалов и структур.
Разработанная технология преодолевает фундаментальные ограничения conventional 3D-печати и создает основу для производства сложных микроструктур, выходящих за рамки возможностей традиционного полупроводникового производства. Особую ценность представляет способность воспроизводить волосоподобные структуры с беспрецедентной точностью.
Статья "Fast 3D printing of fine, continuous, and soft fibers via embedded solvent exchange" демонстрирует потенциал новой технологии для революционных изменений в производстве передовых материалов и микроструктур, вдохновленных природными системами.