Нейросети против землетрясений: новый прорыв в прогнозировании стихийных бедствий

Инженеры из Университета штата Пенсильвания разрабатывают новаторский подход к прогнозированию землетрясений, основанный на искусственном интеллекте, информированном законами физики. Их целью является создание системы, способной предсказывать как лабораторные землетрясения (лабквейки), так и, в перспективе, реальные природные катастрофы.
Нейросети против землетрясений: новый прорыв в прогнозировании стихийных бедствий
Изображение носит иллюстративный характер

Исследование лабораторных землетрясений предоставляет уникальную возможность для изучения механики реальных сейсмических событий в контролируемых условиях. В отличие от мониторинга природных землетрясений, который ведется с поверхности Земли, на значительном удалении от очага, лабквейки позволяют проводить детальные измерения непосредственно в зоне разлома. Это открывает путь к более глубокому пониманию процессов, приводящих к нестабильности земной коры.

В ходе экспериментов ученые воспроизводят лабквейки, вызывая скольжение каменных блоков друг относительно друга, имитируя трение на разломах. Для мониторинга этих процессов используются ультразвуковые преобразователи, регистрирующие акустические сигналы, возникающие при деформации и разрушении горных пород.

На основе полученных данных исследователи разработали модель машинного обучения, способную предсказывать возникновение лабквейков. Ключевой задачей модели является извлечение «параметров трения скорости и состояния» из ультразвукового мониторинга. Эти параметры играют решающую роль в определении механики лабквейков, указывая на прочность разлома и его приближение к критическому состоянию.

Для повышения точности и надежности прогнозов ученые применили модифицированный алгоритм машинного обучения, известный как физически информированная нейронная сеть (PINN). Особенность PINN заключается в интеграции «закона трения скорости и состояния» непосредственно в структуру нейронной сети. Такой подход позволяет модели не только анализировать данные, но и учитывать фундаментальные физические принципы, управляющие процессом возникновения землетрясений.

Использование PINN демонстрирует значительные преимущества. Эти модели не только не уступают по точности стандартным нейросетям, но и превосходят их в способности к долгосрочному прогнозированию. Включение физических законов обеспечивает более глубокое понимание механизмов, лежащих в основе сейсмических явлений, что повышает надежность предсказаний на более длительных временных интервалах.

Кроме того, PINN требуют значительно меньшего объема обучающих данных по сравнению с традиционными моделями машинного обучения. Это особенно важно в контексте сейсмологии, где сбор данных о землетрясениях – сложный и дорогостоящий процесс. Еще одним важным преимуществом PINN является улучшенная способность к «трансферному обучению», что открывает перспективы для применения моделей, обученных на лабквейках, к прогнозированию реальных землетрясений.

Конечной целью исследовательской группы под руководством профессора Парисы Шокухи, профессора инженерных наук и акустики, является разработка подобных моделей для прогнозирования реальных землетрясений в полевых условиях. В команду исследователей также входят доцент Жак Ривьер, профессор инженерных наук и механики, и профессор наук о Земле Крис Мароне, заведующий лабораторией механики горных пород Университета штата Пенсильвания.

В обучении PINN-модели использовались данные, собранные в лаборатории механики горных пород под руководством Криса Мароне. Аспирант Прабхав Борате играл ключевую роль в процессе обучения нейросети, обеспечив интеграцию закона трения в алгоритм, что позволило модели штрафовать себя за прогнозы, не соответствующие физическим принципам.

Исследование, проведенное в Университете штата Пенсильвания, открывает новые горизонты в области прогнозирования землетрясений. Интеграция физических законов в модели искусственного интеллекта представляет собой многообещающий путь к созданию более точных и надежных систем раннего предупреждения о сейсмических катастрофах, способных защитить жизни и инфраструктуру в сейсмоопасных регионах.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка