Арена для ИИ-боев: от симуляций к реальным сражениям

В статье представлен пайплайн для обучения нейросетевых агентов, сражающихся на арене в физическом симуляторе MuJoCo. Разработанная среда позволяет двум четыреногим агентам, MuJoCo Ant, взаимодействовать друг с другом и с ареной, используя частично включенные коллизии. Обучение агентов происходит с помощью алгоритма Soft Actor-Critic (SAC), реализованного на базе JAX. Это позволяет эффективно использовать GPU для параллельных расчетов.
Арена для ИИ-боев: от симуляций к реальным сражениям
Изображение носит иллюстративный характер

Ключевым элементом является функция награды, определяющая поведение агентов. Она состоит из поощрения за сближение, пинок противника и штрафа за падение с арены. Цель обучения — достичь баланса между агрессивным поведением и осторожностью. Функция валидации используется для оценки прогресса агентов. Она награждает за нахождение на арене и штрафует за падение.

Пайплайн включает в себя гибкие настройки для оптимизации процесса обучения, такие как размер батча, размер буфера, коэффициент обучения, и т. д. Также предусмотрена возможность добавления референсных агентов для ускорения обучения и ведение логов в Weights & Biases или Tensorboard. В процессе обучения агенты сражаются не только с референсными агентами, но и со своими собственными прошлыми версиями для повышения конкурентоспособности.

Хотя эксперименты с гуманоидами Humanoid не удались из-за высокой вычислительной нагрузки, проект продемонстрировал потенциал для дальнейших исследований. Будущие направления развития включают эксперименты с разными функциями награды, непрямое управление агентами и обучение агентов с полностью включенными коллизиями. Кроме того, рассматривается возможность использования предварительно обученных фрагментов сети для ускорения обучения.


Новое на сайте

19188Критическая уязвимость в решениях BeyondTrust спровоцировала глобальную волну кражи... 19187Эволюция угроз: атака на цепочку поставок ИИ-ассистента Cline CLI через уязвимость... 19186Как фальшивая проверка Cloudflare в кампании ClickFix скрыто внедряет новый троян... 19185Почему гендерно-нейтральные корпоративные политики становятся главным инструментом... 19184Как искусственный интеллект уничтожил временной зазор между обнаружением уязвимости и... 19183Банковский троян Massiv маскируется под IPTV для захвата контроля над Android 19182Как шпионская кампания CRESCENTHARVEST использует социальную инженерию для кражи данных... 19181Как критическая уязвимость в телефонах Grandstream открывает хакерам доступ к... 19180Почему операционная непрерывность становится единственным ответом на перманентную... 19179Критические уязвимости в популярных расширениях VS Code угрожают миллионам разработчиков 19178Как внедрить интеллектуальные рабочие процессы и почему 88% проектов ИИ терпят неудачу? 19177Критическая уязвимость нулевого дня в Dell RecoverPoint открывает злоумышленникам полный... 19176Notepad++ внедряет механизм двойной блокировки для защиты от атак группировки Lotus Panda 19175Новые угрозы в каталоге CISA: от критических дыр в Chrome и Zimbra до возвращения червя... 19174Использование чат-ботов Copilot и Grok в качестве скрытых прокси-серверов для управления...
Ссылка