Ssylka

Эволюционный трюк: как растения научились пахнуть гниющей плотью

Некоторые растения в природе источают отвратительный запах гниющего мяса или экскрементов. Этот неприятный аромат служит важной цели — привлечению мух для опыления. Недавно ученые раскрыли биохимический механизм, благодаря которому растения производят этот трупный запах, и обнаружили удивительный факт: три неродственные линии растений независимо эволюционировали, используя один и тот же молекулярный механизм.
Эволюционный трюк: как растения научились пахнуть гниющей плотью
Изображение носит иллюстративный характер

Эволюционный трюк, позволяющий растениям пахнуть как разлагающаяся плоть, включает два ключевых этапа. Сначала происходит дупликация гена, известного как SBP1, а затем мутация дополнительной копии, которая приводит к замене определенных аминокислот в производимом ферменте.

Исследователи изучили три различных вида растений: дикий имбирь (Asarum simile), восточноазиатский кустарник эурия (Eurya japonica) и азиатскую скунсовую капусту (Symplocarpus renifolius). У дикого имбиря и эурии для изменения функции фермента потребовалось три аминокислотные замены, в то время как у скунсовой капусты — всего две.

Биохимический процесс, лежащий в основе этого явления, весьма интересен. Оригинальный фермент SBP1 расщепляет метантиол (соединение, вызывающее неприятный запах изо рта у людей) на перекись водорода, сероводород и формальдегид. Однако модифицированный фермент действует иначе — он соединяет две молекулы метантиола, образуя диметилдисульфид, который и создает характерный запах гниющего мяса.

Эволюционное значение этой адаптации подтверждается тем, что среди видов рода Asarum способность производить диметилдисульфид приобреталась и утрачивалась более 18 раз. Это свидетельствует о том, что эволюционное давление благоприятствует растениям, способным создавать этот запах, поскольку они привлекают больше мух для опыления.

Дупликация генов — распространенное явление в эволюции многих видов. Когда ген дублируется, одна копия может мутировать без ущерба для исходной функции, что открывает возможности для инноваций. Подобный механизм привел к продукции морфина в растениях мака. Интересно, что диметилдисульфид также был обнаружен космическим телескопом Джеймса Уэбба в атмосфере экзопланеты K2-18b.

Исследование, раскрывающее этот удивительный эволюционный механизм, было опубликовано 8 мая в журнале Science. Оно демонстрирует, как независимая эволюция может приводить к одинаковым биохимическим решениям у неродственных организмов, когда они сталкиваются с аналогичными экологическими вызовами.


Новое на сайте

18607Золотой распад кометы ATLAS C/2025 K1 18606Секретный бренд древнего Рима на стеклянных шедеврах 18605Смогут ли чипсы без искусственных красителей сохранить свой знаменитый вкус? 18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли