Эволюционный трюк: как растения научились пахнуть гниющей плотью

Некоторые растения в природе источают отвратительный запах гниющего мяса или экскрементов. Этот неприятный аромат служит важной цели — привлечению мух для опыления. Недавно ученые раскрыли биохимический механизм, благодаря которому растения производят этот трупный запах, и обнаружили удивительный факт: три неродственные линии растений независимо эволюционировали, используя один и тот же молекулярный механизм.
Эволюционный трюк: как растения научились пахнуть гниющей плотью
Изображение носит иллюстративный характер

Эволюционный трюк, позволяющий растениям пахнуть как разлагающаяся плоть, включает два ключевых этапа. Сначала происходит дупликация гена, известного как SBP1, а затем мутация дополнительной копии, которая приводит к замене определенных аминокислот в производимом ферменте.

Исследователи изучили три различных вида растений: дикий имбирь (Asarum simile), восточноазиатский кустарник эурия (Eurya japonica) и азиатскую скунсовую капусту (Symplocarpus renifolius). У дикого имбиря и эурии для изменения функции фермента потребовалось три аминокислотные замены, в то время как у скунсовой капусты — всего две.

Биохимический процесс, лежащий в основе этого явления, весьма интересен. Оригинальный фермент SBP1 расщепляет метантиол (соединение, вызывающее неприятный запах изо рта у людей) на перекись водорода, сероводород и формальдегид. Однако модифицированный фермент действует иначе — он соединяет две молекулы метантиола, образуя диметилдисульфид, который и создает характерный запах гниющего мяса.

Эволюционное значение этой адаптации подтверждается тем, что среди видов рода Asarum способность производить диметилдисульфид приобреталась и утрачивалась более 18 раз. Это свидетельствует о том, что эволюционное давление благоприятствует растениям, способным создавать этот запах, поскольку они привлекают больше мух для опыления.

Дупликация генов — распространенное явление в эволюции многих видов. Когда ген дублируется, одна копия может мутировать без ущерба для исходной функции, что открывает возможности для инноваций. Подобный механизм привел к продукции морфина в растениях мака. Интересно, что диметилдисульфид также был обнаружен космическим телескопом Джеймса Уэбба в атмосфере экзопланеты K2-18b.

Исследование, раскрывающее этот удивительный эволюционный механизм, было опубликовано 8 мая в журнале Science. Оно демонстрирует, как независимая эволюция может приводить к одинаковым биохимическим решениям у неродственных организмов, когда они сталкиваются с аналогичными экологическими вызовами.


Новое на сайте

19171Вредоносное по VoidLink: созданная с помощью ИИ угроза для облачных систем и финансового... 19170Палеонтологические поиски и научные убеждения Томаса Джефферсона 19169Спасут ли обновленные протоколы безопасности npm от атак на цепочки поставок? 19168Почему критическая уязвимость BeyondTrust и новые записи в каталоге CISA требуют... 19167Севернокорейская хакерская группировка Lazarus маскирует вредоносный код под тестовые... 19166Государственные хакеры используют Google Gemini для кибершпионажа и клонирования моделей... 19165Можно ли построить мировую сверхдержаву на чашках чая и фунтах сахара? 19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и...
Ссылка