Ssylka

Скандий в TiO₂: новый стандарт эффективности водного фотокатализа

Фотокаталитическое расщепление воды представляет собой ключевую технологию для производства чистого водорода с использованием энергии солнечного света. В этом процессе вода разлагается на кислород и водород без участия ископаемого топлива, а образующийся «зелёный» водород становится перспективным экологически чистым топливом. Центральную роль играет фотокатализатор, который запускает и поддерживает реакцию под воздействием света.
Скандий в TiO₂: новый стандарт эффективности водного фотокатализа
Изображение носит иллюстративный характер

Титановые диоксиды (TiO₂) давно считаются перспективными полупроводниками для фотокаталитического расщепления воды, однако их эффективность ограничивается быстрым рекомбинированием зарядов и неэффективным разделением электронов и дырок. Это снижает выход водорода и уменьшает потенциал промышленного применения.

Команда исследователей под руководством профессора Лю Гана из Института металловедения (IMR) Китайской академии наук представила важный прорыв: создание полупроводника на основе диоксида титана, легированного скандием (Sc), в рутильной фазе. Результаты работы опубликованы в журнале Journal of the American Chemical Society.

Ключевые показатели нового материала впечатляют: видимый квантовый выход (Apparent Quantum Yield, AQY) достиг 30,3%, что означает, что почти треть поглощённых фотонов приводит к эффективному расщеплению воды. Эффективность преобразования солнечной энергии в водород (Solar-to-Hydrogen, STH) составила 0,34%. Оба значения стали рекордными для фотокаталитического расщепления воды с использованием TiO₂ в стандартных условиях окружающей среды — без нагрева и давления.

Основой успеха стала двухступенчатая инновационная стратегия. На первом этапе исследователи внедрили ионы скандия Sc³⁺, что позволило устранить дефекты Ti³⁺. Эти дефекты обычно захватывают заряды, вызывая потери энергии и снижение эффективности. На втором этапе была проведена инженерия межфасетного соединения между кристаллическими плоскостями (101) и (110), что создало внутреннее электрическое поле. Оно эффективно разделяет электроны и дырки, направляя их на разные фасеты, где происходят реакции восстановления и окисления воды. По словам профессора Лю Гана, «этот двойной подход не только минимизирует рекомбинацию зарядов, вызванную дефектами, но и имитирует эффективный механизм разделения зарядов, присущий p-n переходам в фотоэлектрических элементах».

Разработанная технология обещает значительный коммерческий потенциал, особенно в Китае. Страна располагает крупными запасами титана и скандия, развитой индустриальной цепочкой по производству диоксида титана и передовыми возможностями в области редкоземельной металлургии. Новое решение может позволить создать масштабируемое и экономически выгодное производство зелёного водорода. «Наша стратегия, ориентированная на подавление дефектов и использование анизотропии кристаллов, полностью соответствует ресурсным и промышленным преимуществам Китая», — подчёркивает профессор Лю Ган.

Следующим этапом исследований станет повышение поглощения солнечного света и интеграция материала в промышленные солнечные системы для серийного производства водорода.


Новое на сайте

18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude 18572Кровь активных мышей омолодила мозг ленивых сородичей