Ssylka

Как наноразмерная рябь изменяет фундаментальные свойства материалов?

Материалы, созданные в нанометровом масштабе, всего в несколько атомов толщиной, самопроизвольно формируют структурную рябь под действием тепловой энергии, даже при комнатной температуре. Это явление не просто поверхностный дефект; оно существенно влияет на механические свойства таких ультратонких пленок. Возникающие напряжения и изменения упругости могут ограничивать применимость этих перспективных материалов в критически важных областях, например, в современной электронике.
Как наноразмерная рябь изменяет фундаментальные свойства материалов?
Изображение носит иллюстративный характер

Новое исследование предоставило экспериментальное подтверждение теоретическим моделям, описывающим зависимость упругости тонких материалов от их масштаба. Ключевой вывод заключается в том, что упругие свойства материала не являются константой, а изменяются в зависимости от размера образца, причем это изменение напрямую связано с наличием наноразмерной ряби.

Полученные экспериментальные данные совпали с теориями, ранее предложенными исследовательской группой профессора Дэвида Р. Нельсона из Гарвардского университета. Профессор Нельсон также выступил соавтором нового исследования, подтверждающего его теоретические выкладки многолетней давности.

Ассистент-профессор Цзянь Чжоу (Jian Zhou, Ph.D. '18) с кафедры машиностроения Инженерно-прикладного колледжа Томаса Дж. Ватсона (Университет Бингемтона) утверждает: «Впервые удалось точно охарактеризовать влияние этой ряби на механические свойства тонких пленок». Это знание открывает путь к более предсказуемому проектированию наноустройств.

Для экспериментального подтверждения исследователи использовали стандартный процесс производства полупроводников. Были созданы структуры из оксида алюминия (глинозема) толщиной всего 28 нанометров. Для сравнения, это более чем в 1000 раз тоньше диаметра человеческого волоса. Эти структуры формировались на кремниевой подложке.

На поверхности созданных образцов оксида алюминия намеренно индуцировали статическую рябь, имитирующую тепловые флуктуации. Затем поведение этих структур с рябью измеряли с помощью лазеров. Чтобы исключить влияние внешних напряжений, которые могли бы исказить результаты, кремниевые пластины во время тестов удерживались специальными кантилеверами (микроскопическими консолями).

Понимание эффектов, вызванных нанорябью, имеет решающее значение для развития технологий, основанных на тонких пленках. Это касается разработки новых поколений микроэлектроники, микромеханических устройств (MEMS) и даже микроскопических роботов, способных функционировать на клеточном уровне.

Открытия могут стимулировать инновации в таких областях, как медицина (например, для создания имплантируемых датчиков или систем доставки лекарств), вычислительная техника (для более компактных и эффективных компонентов) и многих других технологических сферах, где миниатюризация играет ключевую роль.

Цзянь Чжоу видит большие перспективы: «Мы сможем создавать более совершенные структуры, например, для микроробототехники, с точным геометрическим контролем». Он также упоминает возможность разработки систем с управляемой в реальном времени формой, сравнивая их с концепцией «Трансформеров», где структуры могут активно изменять свою конфигурацию.

Исследование стало результатом сотрудничества нескольких ведущих научных центров. Помимо Университета Бингемтона и Гарвардского университета, в работе приняли участие специалисты из Аргоннской национальной лаборатории, Принстонского университета и Университета штата Пенсильвания.

Результаты этого междисциплинарного исследования были недавно опубликованы в престижном научном журнале Proceedings of the National Academy of Sciences (PNAS).

В качестве наглядной демонстрации контроля над поведением материала исследователи, используя полученные знания о влиянии ряби, смогли изогнуть тонкую пленку, придав ей форму «наноскопических цветов». Это показывает потенциал управления формой и свойствами материалов на наноуровне.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года