Исследователи из Университета Оклахомы совершили значительный прорыв в области квантовых технологий. Команда под руководством доцента Итонга Донга разработала метод, который решает одну из ключевых проблем квантовых точек — их нестабильность. Результаты исследования, опубликованные в журнале Nature Communications, могут кардинально изменить будущее квантовых вычислений и коммуникаций.

Квантовые точки (КТ) — это полупроводниковые наночастицы, настолько малые, что если бы одну квантовую точку увеличить до размера бейсбольного мяча, то сам мяч по сравнению с ней был бы размером с Луну. Несмотря на микроскопические размеры, они широко применяются в компьютерных мониторах, светодиодах, солнечных батареях, биомедицинских инженерных устройствах и, что особенно важно, в квантовых вычислениях и коммуникациях.
Основная проблема квантовых точек заключается в их нестабильности — они могут мерцать или полностью прекращать излучение фотонов уже через несколько минут работы. Это явление, известное как «мерцание», серьезно ограничивает их применение в квантовых технологиях, где критически важна точность излучения фотонов.
«В квантовых вычислениях необходимо контролировать, сколько фотонов излучается в любой момент времени», — объясняет доцент Итонг Донг. Традиционно для стабильной работы квантовых излучателей требовалось охлаждение до сверхнизких температур с использованием жидкого гелия (около -452°F или криогенных температур), что делало квантовые устройства сложными и дорогостоящими.
Исследователи из Университета Оклахомы нашли революционное решение этой проблемы. Они разработали метод добавления кристаллизованного молекулярного слоя к перовскитным квантовым точкам. Этот «покрывающий» слой нейтрализует поверхностные дефекты и стабилизирует поверхностные решетки, предотвращая мерцание и затемнение квантовых точек.
Результаты впечатляют: если раньше квантовые точки выходили из строя после 10-20 минут непрерывного использования из-за поверхностных дефектов, то с новым кристаллическим покрытием они непрерывно излучают фотоны более 12 часов без деградации и практически без мерцания. При этом эффективность излучения составляет почти 100% при комнатной температуре.
«Этот материал идеален, поскольку он недорог в использовании и масштабировании, а также эффективен при комнатной температуре», — отмечает Донг. Перовскитные квантовые точки недороги в синтезе и не требуют криогенного охлаждения, что устраняет значительные финансовые барьеры для их широкого применения.
Открытие открывает путь к созданию фотонных чипов для будущих устройств квантовых вычислений и квантовой связи. «Поскольку перовскитные квантовые точки могут использоваться при нормальных температурах и синтезироваться с очень низкими затратами, мы считаем, что они могут стать источником света для фотонных чипов в будущих устройствах квантовых вычислений и квантовой связи», — подчеркивает Донг.
Исследование имеет глубокие последствия для квантовой области. «На мой взгляд, наше исследование имеет глубокие последствия для квантовой области. Мы нашли способ стабилизировать эти квантовые точки с использованием органических и неорганических молекулярных кристаллов... Это действительно захватывающе», — говорит Итонг Донг.
Устранение основных ограничений, препятствовавших использованию квантовых точек в квантовых технологиях, открывает двери как для дальнейших фундаментальных исследований, так и для практического применения квантовых устройств в реальном мире. Доступные, стабильные источники квантового света, работающие при комнатной температуре, могут стать ключом к широкому распространению квантовых технологий в ближайшем будущем.

Изображение носит иллюстративный характер
Квантовые точки (КТ) — это полупроводниковые наночастицы, настолько малые, что если бы одну квантовую точку увеличить до размера бейсбольного мяча, то сам мяч по сравнению с ней был бы размером с Луну. Несмотря на микроскопические размеры, они широко применяются в компьютерных мониторах, светодиодах, солнечных батареях, биомедицинских инженерных устройствах и, что особенно важно, в квантовых вычислениях и коммуникациях.
Основная проблема квантовых точек заключается в их нестабильности — они могут мерцать или полностью прекращать излучение фотонов уже через несколько минут работы. Это явление, известное как «мерцание», серьезно ограничивает их применение в квантовых технологиях, где критически важна точность излучения фотонов.
«В квантовых вычислениях необходимо контролировать, сколько фотонов излучается в любой момент времени», — объясняет доцент Итонг Донг. Традиционно для стабильной работы квантовых излучателей требовалось охлаждение до сверхнизких температур с использованием жидкого гелия (около -452°F или криогенных температур), что делало квантовые устройства сложными и дорогостоящими.
Исследователи из Университета Оклахомы нашли революционное решение этой проблемы. Они разработали метод добавления кристаллизованного молекулярного слоя к перовскитным квантовым точкам. Этот «покрывающий» слой нейтрализует поверхностные дефекты и стабилизирует поверхностные решетки, предотвращая мерцание и затемнение квантовых точек.
Результаты впечатляют: если раньше квантовые точки выходили из строя после 10-20 минут непрерывного использования из-за поверхностных дефектов, то с новым кристаллическим покрытием они непрерывно излучают фотоны более 12 часов без деградации и практически без мерцания. При этом эффективность излучения составляет почти 100% при комнатной температуре.
«Этот материал идеален, поскольку он недорог в использовании и масштабировании, а также эффективен при комнатной температуре», — отмечает Донг. Перовскитные квантовые точки недороги в синтезе и не требуют криогенного охлаждения, что устраняет значительные финансовые барьеры для их широкого применения.
Открытие открывает путь к созданию фотонных чипов для будущих устройств квантовых вычислений и квантовой связи. «Поскольку перовскитные квантовые точки могут использоваться при нормальных температурах и синтезироваться с очень низкими затратами, мы считаем, что они могут стать источником света для фотонных чипов в будущих устройствах квантовых вычислений и квантовой связи», — подчеркивает Донг.
Исследование имеет глубокие последствия для квантовой области. «На мой взгляд, наше исследование имеет глубокие последствия для квантовой области. Мы нашли способ стабилизировать эти квантовые точки с использованием органических и неорганических молекулярных кристаллов... Это действительно захватывающе», — говорит Итонг Донг.
Устранение основных ограничений, препятствовавших использованию квантовых точек в квантовых технологиях, открывает двери как для дальнейших фундаментальных исследований, так и для практического применения квантовых устройств в реальном мире. Доступные, стабильные источники квантового света, работающие при комнатной температуре, могут стать ключом к широкому распространению квантовых технологий в ближайшем будущем.