Ssylka

Как остановить невидимого врага? Революционное открытие в борьбе с нематодами сахарной свеклы

Сахарная свекла, кукуруза, табак, соя и другие ценные культуры ежегодно подвергаются атакам почвенных цистообразующих нематод, что приводит к значительным потерям урожая. Эти микроскопические паразиты проникают в корни растений, нарушая их функционирование и лишая питательных веществ. Инфицированные растения отстают в росте, листья вянут, а урожайность резко падает. Бороться с нематодами традиционными методами, такими как севооборот и устойчивые сорта, становится все сложнее.
Как остановить невидимого врага? Революционное открытие в борьбе с нематодами сахарной свеклы
Изображение носит иллюстративный характер

Ученые из Колледжа сельскохозяйственных и экологических наук (CAES) при Университете штата Джорджия совершили прорыв в понимании механизмов заражения сахарной свеклы цистообразующими нематодами. Исследование, опубликованное в журнале PLOS Pathogens, раскрывает детали того, как эти паразиты манипулируют сосудистой системой растений.

Команда под руководством Мелиссы Митчум, специалиста по нематодам растений и профессора кафедры фитопатологии и Института селекции растений, генетики и геномики, а также научного сотрудника Сюньляна Лю, обнаружила, что нематоды используют пептиды, имитирующие растительные пептиды, для «взлома» развития сосудистой системы растения.

Нематода Heterodera schachtii, специфичная для сахарной свеклы, представляет собой серьезную угрозу для этой культуры. Однако, чтобы понять механизм заражения, ученые использовали Arabidopsis (резуховидка Таля) – цветущий сорняк, восприимчивый к цистообразующим нематодам сахарной свеклы, в качестве модельного растения.

Исследователи обнаружили, что нематоды воздействуют на регуляторные факторы HD ZIP III, ответственные за рост и развитие растений. Нематодный пептид активирует гены HD ZIP III, что приводит к превращению клеток корня в место питания для паразита.

Фактически, цистообразующие нематоды проникают в самую суть программы развития сосудистой системы растения. Этот процесс занимает от 25 до 30 дней, именно столько длится жизненный цикл нематоды. За это время нематоды наносят непоправимый вред посевам.

Открытие американских ученых открывает новые перспективы в борьбе с нематодами. Блокирование сигналов биокоммуникации между нематодой и растением может предотвратить создание места питания паразита и завершение его жизненного цикла.

Теперь перед учеными стоит задача разработать биоинженерные сорта сахарной свеклы и других культур, устойчивые к заражению нематодами. Успешная реализация этого проекта позволит значительно сократить потери урожая и повысить продовольственную безопасность.

К примеру, соевая цистообразующая нематода ежегодно наносит ущерб сельскому хозяйству США на сумму более 1 миллиарда долларов. Решение этой проблемы с помощью биотехнологий станет огромным достижением.


Новое на сайте

16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем 16935Как рентгеновское зрение раскрывает самые бурные процессы во вселенной? 16934Уязвимость нулевого дня в SonicWall VPN стала оружием группировки Akira 16933Может ли государственный фонд единолично решать судьбу американской науки? 16932Способна ли филантропия блогеров решить мировой водный кризис? 16931Взлом через промпт: как AI-редактор Cursor превращали в оружие 16930Мог ли древний кризис заставить людей хоронить мертвых в печах с собаками? 16929Какие наушники Bose выбрать на распродаже: для полной изоляции или контроля над...