Ssylka

Как изменение структуры льда влияет на атмосферные процессы?

Исследование, проведённое в Lawrence Livermore National Laboratory и опубликованное в журнале JACS Au, совмещает спектроскопию, моделирование и машинное обучение для детального анализа ледяных поверхностей и их влияния на адсорбцию и деградацию молекул в атмосфере.
Как изменение структуры льда влияет на атмосферные процессы?
Изображение носит иллюстративный характер

Лед демонстрирует способность ускорять адсорбцию молекул, подобно тому как язык может замерзнуть при контакте с холодным металлическим столбом. Одновременно световые воздействия способствуют распаду молекул с выделением следовых газов, что имеет значимые последствия для атмосферных химических процессов.

Применение вибрационной суммарно-частотной генерации (SFG) спектроскопии позволяет исследовать асимметричные области, такие как поверхности и интерфейсы, несмотря на сложности интерпретации экспериментальных данных в силу недостаточного молекулярного разрешения. Комбинация данного метода с вычислительным моделированием значительно обогащает понимание процессов на границе фазы.

Анализ показал, что в объёме льда кислородные атомы занимают фиксированное положение в кристаллической решётке, тогда как протоны остаются хаотичными. На поверхности льда наблюдается упорядоченное распределение как кислородных, так и водородных атомов, что меняет свойства адсорбции и реакционную способность материалов под воздействием внешних факторов.

Разработка нейронной сети позволила эффективно исследовать различные варианты расположения протонов на поверхности. Использование моделей машинного обучения значительно улучшило возможность соотнесения пиковых значений SFG-спектроскопических данных с конкретными конфигурациями молекул. «Эти модели машинного обучения позволили эффективно исследовать различные варианты расположения протонов на поверхности льда и значительно улучшили нашу способность интерпретировать экспериментальные измерения», – сообщила Маргарет Берренс из Quantum Simulations Group LLNL, первая авторка исследования.

Комплексный подход, объединяющий экспериментальные и вычислительные методы, создал эффективный инструмент для симуляции и анализа спектров ледяных интерфейсов. Применение SFG спектроскопии демонстрирует её потенциал в изучении сложных межфазовых процессов и закладывает основу для дальнейшего исследования переходов «твердое-жидкое».

Полученные результаты расширяют понимание химических механизмов в атмосфере, позволяя совершенствовать глобальные модели климата и атмосферной химии. Совместное использование современных спектроскопических методов, моделирования и машинного обучения откроет новые возможности для исследования и интерпретации взаимодействий на ледовых и других интерфейсах.


Новое на сайте

16954Как свободный выбор приложений сотрудниками создает скрытые угрозы для бизнеса? 16953Обречена ли вселенная на коллапс через 10 миллиардов лет? 16952Новая забастовка усугубляет репутационный кризис Boeing 16951Хорнелундское золото: неразгаданная тайна викингов 16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым