Ssylka

Как изменение структуры льда влияет на атмосферные процессы?

Исследование, проведённое в Lawrence Livermore National Laboratory и опубликованное в журнале JACS Au, совмещает спектроскопию, моделирование и машинное обучение для детального анализа ледяных поверхностей и их влияния на адсорбцию и деградацию молекул в атмосфере.
Как изменение структуры льда влияет на атмосферные процессы?
Изображение носит иллюстративный характер

Лед демонстрирует способность ускорять адсорбцию молекул, подобно тому как язык может замерзнуть при контакте с холодным металлическим столбом. Одновременно световые воздействия способствуют распаду молекул с выделением следовых газов, что имеет значимые последствия для атмосферных химических процессов.

Применение вибрационной суммарно-частотной генерации (SFG) спектроскопии позволяет исследовать асимметричные области, такие как поверхности и интерфейсы, несмотря на сложности интерпретации экспериментальных данных в силу недостаточного молекулярного разрешения. Комбинация данного метода с вычислительным моделированием значительно обогащает понимание процессов на границе фазы.

Анализ показал, что в объёме льда кислородные атомы занимают фиксированное положение в кристаллической решётке, тогда как протоны остаются хаотичными. На поверхности льда наблюдается упорядоченное распределение как кислородных, так и водородных атомов, что меняет свойства адсорбции и реакционную способность материалов под воздействием внешних факторов.

Разработка нейронной сети позволила эффективно исследовать различные варианты расположения протонов на поверхности. Использование моделей машинного обучения значительно улучшило возможность соотнесения пиковых значений SFG-спектроскопических данных с конкретными конфигурациями молекул. «Эти модели машинного обучения позволили эффективно исследовать различные варианты расположения протонов на поверхности льда и значительно улучшили нашу способность интерпретировать экспериментальные измерения», – сообщила Маргарет Берренс из Quantum Simulations Group LLNL, первая авторка исследования.

Комплексный подход, объединяющий экспериментальные и вычислительные методы, создал эффективный инструмент для симуляции и анализа спектров ледяных интерфейсов. Применение SFG спектроскопии демонстрирует её потенциал в изучении сложных межфазовых процессов и закладывает основу для дальнейшего исследования переходов «твердое-жидкое».

Полученные результаты расширяют понимание химических механизмов в атмосфере, позволяя совершенствовать глобальные модели климата и атмосферной химии. Совместное использование современных спектроскопических методов, моделирования и машинного обучения откроет новые возможности для исследования и интерпретации взаимодействий на ледовых и других интерфейсах.


Новое на сайте

18293Почему для исправления «техношеи» нужно укреплять мышцы, а не растягивать их? 18292Как новорожденная звезда подала сигнал из эпицентра мощнейшего взрыва? 18291Нотный рецепт: как наука превращает музыку в обезболивающее 18290Что превращает кофейное зерно в идеальный напиток? 18289Как пробуждение древних микробов и тайны черных дыр меняют наше будущее? 18288Как 3500-летняя крепость в Синае раскрывает секреты египетской военной мощи? 18287Китайская кибергруппа Silver Fox расширяет охоту на Японию и Малайзию 18286Набор инструментов Kobalt на 297 предметов в Lowe's всего за $99 18285Анатомия вирусного успеха дубайского шоколада 18284Почему лемуры Мадагаскара нарушают общепринятые законы эволюции? 18283Капля крови против рака: новая эра диагностики онкологии 18282Как северокорейские хакеры создают универсальное кибероружие из двух вредоносных программ? 18281Как пугало проиграло войну с птицами и стало культурным символом 18280Таблетка-принтер для заживления тканей изнутри 18279Наследие кометы галлея: как увидеть метеорный поток Ориониды