Ssylka

Прорыв в анализе тканей с помощью STAIG

Биологические ткани состоят из различных клеточных популяций, организованных в сложные пространственные схемы, что имеет решающее значение для их нормального функционирования. Изучение этих паттернов позволяет выявлять тонкие особенности клеточных взаимодействий и реакций на изменения окружающей среды, что особенно важно при исследовании сложных патологий, таких как рак.
Прорыв в анализе тканей с помощью STAIG
Изображение носит иллюстративный характер

За последнее десятилетие методы пространственной транскриптомики значительно развились, позволяя картировать активность генов в тканях с сохранением их структурной целостности. Такой подход обеспечивает глубокое понимание процессов генной экспрессии в норме и при заболеваниях, сохраняя контекст органной архитектуры.

Традиционные методы сталкиваются с проблемами точной идентификации функциональных областей тканей на основе генетических данных. Некоторые подходы полагаются на произвольно заданные параметры дистанции, не всегда адекватно отражающие истинные биологические границы, в то время как методы, объединяющие множественные изображения, часто ограничены непоследовательным качеством данных и требуют ручного вмешательства для выравнивания наборов данных.

Группа ученых из Института медицинских наук Токийского университета (Япония) под руководством профессора Кенты Накая предложила решение этих проблем – систему Spatial Transcriptomics Analysis via Image-Aided Graph Contrastive Learning (STAIG). Результаты исследования были опубликованы онлайн в журнале Nature Communications в 2025 году.

Работы возглавляются профессором Кентой Накая, а ключевой вклад в исследование внес аспирант Яитао Ян, что подчеркивает коллективный характер научного поиска инновационных решений.

Система STAIG автоматически объединяет данные о генной экспрессии, пространственную информацию и гистологические изображения без необходимости ручного выравнивания. Гистологические изображения разбиваются на небольшие участки, из которых с помощью модели самообучения извлекаются ключевые признаки, позволяющие создать графовую структуру, где узлы соответствуют генетической активности, а ребра – их пространственному сосуществованию. Применение алгоритма графового контрастивного обучения обеспечивает точное сопоставление генных паттернов с конкретными участками ткани.

Как отметил профессор Накая: «STAIG использует надежную архитектуру модели и дополнительные данные изображений, что обеспечивает высокую точность идентификации пространственных доменов, позволяя проводить интеграцию данных без необходимости выравнивания срезов тканей или ручных корректировок». Такой подход демонстрирует значительные преимущества, позволяющие преодолевать ограничения существующих методов, особенно в условиях отсутствия пространственного выравнивания или необходимых изображений.

Сравнительные исследования подтвердили высокую эффективность STAIG по сравнению с современными методами. В экспериментах с данными по раку молочной железы у человека и меланоме у зебрафиш система с высокой разрешающей способностью точно выделяла границы опухолевых и переходных зон, что открывает новые перспективы для исследований в области онкологии.

Профессор Накая уверен, что STAIG ускорит использование данных пространственного транскриптома для анализа сложных биологических систем, включая взаимодействие раковых клеток с окружающими тканями и процессы формирования органов в эмбриональном развитии. Применение данной технологии способно расширить понимание функционирования мозга, развития опухолей и формирования тканей, способствуя разработке инновационных лечебных методов.


Новое на сайте

16951Хорнелундское золото: неразгаданная тайна викингов 16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс?