Исследователи из Института материаловедения и технологий Нинбо (Китайская академия наук) совершили прорыв в создании новых магнитных материалов с использованием искусственного интеллекта. Их работа, опубликованная в журнале Advanced Functional Materials, демонстрирует значительный прогресс в разработке железосодержащих аморфных сплавов для высокочастотных электронных устройств.

Традиционные мягкие магнитные материалы, такие как кремнистая сталь, сталкиваются с серьезной проблемой при работе на высоких частотах в диапазоне МГц и ГГц. Они демонстрируют высокие потери в сердечнике, что приводит к снижению эффективности, чрезмерному нагреву и рискам теплового разгона в высокомощных приложениях. Существующие аморфные сплавы на основе железа, хотя и обладают низкой коэрцитивной силой, имеют недостаточную намагниченность насыщения для устройств с высокой плотностью мощности.
Для решения этой проблемы ученые применили методы машинного обучения для прогнозирования и оптимизации намагниченности насыщения. Среди использованных алгоритмов наилучшие результаты показал XGBoost с коэффициентом детерминации R² более 0,85 и среднеквадратичной ошибкой менее 0,12 Тесла.
В ходе исследования были выявлены критические факторы, влияющие на магнитные свойства сплавов. Содержание железа должно превышать 75 атомных процентов, энтальпия смешения должна находиться в диапазоне от -18,7 до -14 кДж/моль, а разница электроотрицательности должна быть ниже 0,07.
Для улучшения свойств материала исследователи ввели в состав кобальт, чтобы использовать эффект обменного взаимодействия Fe-Co. Это привело к созданию новых серий сплавов: Fe-Co-Ni-Si-B и Fe-Co-Ni-B-P-C.
Разработанные материалы демонстрируют впечатляющие характеристики. Намагниченность насыщения (Bs) достигает 1,85 Тесла, с некоторыми образцами, показывающими значения до 1,92 Тесла. При этом коэрцитивная сила (Hc) составляет всего 1,2 А/м, что значительно превосходит свойства традиционной кремнистой стали.
Новые аморфные сплавы на основе железа имеют широкий спектр применений в высокочастотной, высокомощной электронике. Они могут использоваться в оборудовании для 5G-коммуникаций и электромобилях. Благодаря своим свойствам, эти материалы позволяют создавать более компактные и легкие магнитные компоненты, что критически важно для технологий следующего поколения, требующих высокой плотности мощности и минимальных тепловых потерь.
Использование искусственного интеллекта для разработки новых материалов демонстрирует эффективность этого подхода и открывает новые возможности в материаловедении. Сочетание машинного обучения с традиционными методами исследования позволяет значительно ускорить процесс создания материалов с заданными свойствами и решать сложные технологические задачи современной электроники.

Изображение носит иллюстративный характер
Традиционные мягкие магнитные материалы, такие как кремнистая сталь, сталкиваются с серьезной проблемой при работе на высоких частотах в диапазоне МГц и ГГц. Они демонстрируют высокие потери в сердечнике, что приводит к снижению эффективности, чрезмерному нагреву и рискам теплового разгона в высокомощных приложениях. Существующие аморфные сплавы на основе железа, хотя и обладают низкой коэрцитивной силой, имеют недостаточную намагниченность насыщения для устройств с высокой плотностью мощности.
Для решения этой проблемы ученые применили методы машинного обучения для прогнозирования и оптимизации намагниченности насыщения. Среди использованных алгоритмов наилучшие результаты показал XGBoost с коэффициентом детерминации R² более 0,85 и среднеквадратичной ошибкой менее 0,12 Тесла.
В ходе исследования были выявлены критические факторы, влияющие на магнитные свойства сплавов. Содержание железа должно превышать 75 атомных процентов, энтальпия смешения должна находиться в диапазоне от -18,7 до -14 кДж/моль, а разница электроотрицательности должна быть ниже 0,07.
Для улучшения свойств материала исследователи ввели в состав кобальт, чтобы использовать эффект обменного взаимодействия Fe-Co. Это привело к созданию новых серий сплавов: Fe-Co-Ni-Si-B и Fe-Co-Ni-B-P-C.
Разработанные материалы демонстрируют впечатляющие характеристики. Намагниченность насыщения (Bs) достигает 1,85 Тесла, с некоторыми образцами, показывающими значения до 1,92 Тесла. При этом коэрцитивная сила (Hc) составляет всего 1,2 А/м, что значительно превосходит свойства традиционной кремнистой стали.
Новые аморфные сплавы на основе железа имеют широкий спектр применений в высокочастотной, высокомощной электронике. Они могут использоваться в оборудовании для 5G-коммуникаций и электромобилях. Благодаря своим свойствам, эти материалы позволяют создавать более компактные и легкие магнитные компоненты, что критически важно для технологий следующего поколения, требующих высокой плотности мощности и минимальных тепловых потерь.
Использование искусственного интеллекта для разработки новых материалов демонстрирует эффективность этого подхода и открывает новые возможности в материаловедении. Сочетание машинного обучения с традиционными методами исследования позволяет значительно ускорить процесс создания материалов с заданными свойствами и решать сложные технологические задачи современной электроники.